Skip to main content

Whiskbroom Scanning Pushbroom Scanning




  Whiskbroom Scanning:  
Whiskbroom scanning is a method of remote sensing where a single detector observes a narrow strip on the ground as a scanning mirror sweeps back and forth. The process is somewhat analogous to how a person might sweep a broom back and forth across the floor. In this scanning technique:

1. Mirror Movement: A scanning mirror is physically moved, often by mechanical means, to redirect the incoming electromagnetic radiation. As the mirror moves, it reflects the radiation from different ground locations toward the single detector.

2. Single Detector: There is only one detector in the system that captures the reflected radiation at any given time. The detector measures the intensity of the radiation for each location as the mirror sweeps across.

3. Strip Imaging: The result is a series of measurements that correspond to a narrow strip of the Earth's surface. As the mirror continues to sweep, the detector captures data from adjacent strips, building up an image of the target area strip by strip.

Whiskbroom scanning is known for its simplicity and ease of implementation. However, it can take longer to cover a wide area compared to other scanning methods like pushbroom. Also, it's important to account for potential distortions in the final image due to the time delay between measurements at different locations.

  Pushbroom Scanning:  
Pushbroom scanning is another method used in remote sensing, but it involves an array of detectors instead of a single detector. Here's how it works:

1. Array of Detectors: In a pushbroom system, an array of detectors is used, with each detector observing a specific ground location. These detectors are aligned in a row perpendicular to the direction of the scan.

2. Continuous Data Collection: Instead of moving a single detector, a mirror or satellite platform moves the entire array of detectors across the scene. As the mirror/platform progresses, each detector continuously collects data from its designated location.

3. Continuous Strip Image: The result is a continuous strip of data collected over time as the array moves. This strip builds up an image of the target area without the need for multiple sweeps like in whiskbroom scanning.

Pushbroom scanning offers advantages in terms of efficiency and speed when covering large areas. It provides continuous and high-resolution imagery, making it suitable for applications where timely data acquisition is crucial.

Both whiskbroom and pushbroom scanning have their strengths and weaknesses, and the choice between them depends on factors such as the sensor's capabilities, mission requirements, and the desired spatial coverage.

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud