Skip to main content

Whiskbroom Scanning Pushbroom Scanning




  Whiskbroom Scanning:  
Whiskbroom scanning is a method of remote sensing where a single detector observes a narrow strip on the ground as a scanning mirror sweeps back and forth. The process is somewhat analogous to how a person might sweep a broom back and forth across the floor. In this scanning technique:

1. Mirror Movement: A scanning mirror is physically moved, often by mechanical means, to redirect the incoming electromagnetic radiation. As the mirror moves, it reflects the radiation from different ground locations toward the single detector.

2. Single Detector: There is only one detector in the system that captures the reflected radiation at any given time. The detector measures the intensity of the radiation for each location as the mirror sweeps across.

3. Strip Imaging: The result is a series of measurements that correspond to a narrow strip of the Earth's surface. As the mirror continues to sweep, the detector captures data from adjacent strips, building up an image of the target area strip by strip.

Whiskbroom scanning is known for its simplicity and ease of implementation. However, it can take longer to cover a wide area compared to other scanning methods like pushbroom. Also, it's important to account for potential distortions in the final image due to the time delay between measurements at different locations.

  Pushbroom Scanning:  
Pushbroom scanning is another method used in remote sensing, but it involves an array of detectors instead of a single detector. Here's how it works:

1. Array of Detectors: In a pushbroom system, an array of detectors is used, with each detector observing a specific ground location. These detectors are aligned in a row perpendicular to the direction of the scan.

2. Continuous Data Collection: Instead of moving a single detector, a mirror or satellite platform moves the entire array of detectors across the scene. As the mirror/platform progresses, each detector continuously collects data from its designated location.

3. Continuous Strip Image: The result is a continuous strip of data collected over time as the array moves. This strip builds up an image of the target area without the need for multiple sweeps like in whiskbroom scanning.

Pushbroom scanning offers advantages in terms of efficiency and speed when covering large areas. It provides continuous and high-resolution imagery, making it suitable for applications where timely data acquisition is crucial.

Both whiskbroom and pushbroom scanning have their strengths and weaknesses, and the choice between them depends on factors such as the sensor's capabilities, mission requirements, and the desired spatial coverage.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...