Skip to main content

Whiskbroom Scanning Pushbroom Scanning




  Whiskbroom Scanning:  
Whiskbroom scanning is a method of remote sensing where a single detector observes a narrow strip on the ground as a scanning mirror sweeps back and forth. The process is somewhat analogous to how a person might sweep a broom back and forth across the floor. In this scanning technique:

1. Mirror Movement: A scanning mirror is physically moved, often by mechanical means, to redirect the incoming electromagnetic radiation. As the mirror moves, it reflects the radiation from different ground locations toward the single detector.

2. Single Detector: There is only one detector in the system that captures the reflected radiation at any given time. The detector measures the intensity of the radiation for each location as the mirror sweeps across.

3. Strip Imaging: The result is a series of measurements that correspond to a narrow strip of the Earth's surface. As the mirror continues to sweep, the detector captures data from adjacent strips, building up an image of the target area strip by strip.

Whiskbroom scanning is known for its simplicity and ease of implementation. However, it can take longer to cover a wide area compared to other scanning methods like pushbroom. Also, it's important to account for potential distortions in the final image due to the time delay between measurements at different locations.

  Pushbroom Scanning:  
Pushbroom scanning is another method used in remote sensing, but it involves an array of detectors instead of a single detector. Here's how it works:

1. Array of Detectors: In a pushbroom system, an array of detectors is used, with each detector observing a specific ground location. These detectors are aligned in a row perpendicular to the direction of the scan.

2. Continuous Data Collection: Instead of moving a single detector, a mirror or satellite platform moves the entire array of detectors across the scene. As the mirror/platform progresses, each detector continuously collects data from its designated location.

3. Continuous Strip Image: The result is a continuous strip of data collected over time as the array moves. This strip builds up an image of the target area without the need for multiple sweeps like in whiskbroom scanning.

Pushbroom scanning offers advantages in terms of efficiency and speed when covering large areas. It provides continuous and high-resolution imagery, making it suitable for applications where timely data acquisition is crucial.

Both whiskbroom and pushbroom scanning have their strengths and weaknesses, and the choice between them depends on factors such as the sensor's capabilities, mission requirements, and the desired spatial coverage.

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...