Skip to main content

What is Water and how it is a Resource

Water:  

1.   Chemical Composition:   Water is a compound made up of two hydrogen atoms and one oxygen atom, with the chemical formula H2O.

2.   States of Matter:   It can exist in three main states - liquid, solid (ice), and gas (water vapor) - depending on temperature and pressure.

3.   Universal Solvent:   Water is an excellent solvent, meaning it can dissolve a wide range of substances, making it essential for various chemical reactions and biological processes.

4.   High Heat Capacity:   It has a high heat capacity, which helps regulate temperature and climate patterns on Earth.

5.   Cohesion and Adhesion:   Water molecules exhibit cohesion (stick together) and adhesion (stick to other surfaces), crucial for capillary action in plants and the transport of nutrients.

6.   Surface Tension:   The surface tension of water enables insects like water striders to "walk" on its surface due to the cohesive forces between molecules.


  Water as a Resource:  

1.   Life Sustenance:   Water is fundamental for all forms of life, from microorganisms to plants and animals, providing hydration and supporting growth.

2.   Drinking Water:   Access to clean and safe drinking water is essential for human health and well-being.

3.   Agriculture:   Water is vital for irrigation, ensuring healthy crop growth and food production.

4.   Industrial Use:   Many industries require water for processes such as manufacturing, cooling, and cleaning.

5.   Energy Production:   Water is used in hydroelectric power generation and cooling processes in thermal power plants.

6.   Sanitation and Hygiene:   Water is essential for sanitation and hygiene practices, reducing the spread of diseases.

7.   Recreation and Aesthetics:   Lakes, rivers, and oceans provide opportunities for recreational activities and contribute to the beauty of landscapes.

8.   Ecosystem Support:   Aquatic ecosystems rely on water bodies as habitats for a diverse range of species and contribute to biodiversity.

9.   Transportation:   Waterways serve as important transportation routes for goods and people.


  Challenges and Conservation:  

1.   Scarcity:   Some regions face water scarcity due to insufficient supply, overuse, or pollution, emphasizing the need for efficient water management.

2.   Pollution:   Water sources can become contaminated by pollutants, affecting both human health and ecosystems.

3.   Climate Change:   Altered precipitation patterns and rising temperatures impact water availability and distribution.

4.   Sustainable Management:   Proper management, conservation, and recycling of water resources are vital to ensure long-term availability.

5.   Global Cooperation:   Addressing water-related challenges requires international collaboration and sustainable practices.


In essence, water is a precious resource that sustains life, supports various human activities, and influences ecological systems, making its responsible management and conservation crucial for a sustainable future.





Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...