Skip to main content

Hyperspectral Imaging. Remote Sensing




Hyperspectral imaging is an advanced remote sensing technique that goes beyond multispectral imaging. Instead of capturing data in a few discrete spectral bands, hyperspectral sensors capture data in hundreds of narrow and contiguous bands across the electromagnetic spectrum. This detailed spectral information allows for the identification and characterization of materials and substances with a high degree of precision.

Hyperspectral imaging is particularly useful for tasks such as mineral exploration, environmental monitoring, agriculture assessment, and pollution detection. It can help detect subtle differences in surface materials, vegetation health, and chemical composition that might be missed by traditional multispectral sensors.

Some important satellites with hyperspectral sensors include:

1. Hyperion (onboard EO-1): Hyperion was one of the first hyperspectral sensors in space, launched aboard NASA's Earth Observing-1 (EO-1) satellite. It captures data in 220 spectral bands, providing high-resolution hyperspectral imagery for various applications.

2. EnMAP (Environmental Mapping and Analysis Program): EnMAP is a German satellite designed specifically for hyperspectral imaging. It aims to monitor the Earth's environment and resources with a focus on applications like agriculture, forestry, and land cover mapping.

3. CHRIS (Compact High-Resolution Imaging Spectrometer): CHRIS is a hyperspectral sensor flown on the European Space Agency's (ESA) Proba-1 satellite. It provides detailed hyperspectral data for land and coastal zone applications.

4. PRISMA (PRecursore IperSpettrale della Missione Applicativa): PRISMA is an Italian satellite dedicated to hyperspectral remote sensing. It offers high spatial and spectral resolution data for applications such as agriculture, forestry, and environmental monitoring.

5. HyspIRI (Hyperspectral Infrared Imager): Although not yet launched, the proposed HyspIRI mission from NASA aims to provide global hyperspectral and thermal infrared data for studying Earth's ecosystems, geology, and natural hazards.

Hyperspectral imaging satellites contribute significantly to our understanding of the Earth's surface composition and properties, enabling scientists and researchers to gather detailed information for a wide range of applications.

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...