Skip to main content

Discrete Detectors and Scanning mirrors




  Discrete Detectors:  


Discrete detectors are devices used to capture electromagnetic radiation, such as visible light, infrared, or microwave energy, from the Earth's surface or atmosphere. They convert this radiation into electrical signals that can be processed and turned into images or data. These detectors work on the principle of the photoelectric effect, where incoming photons of light or other electromagnetic waves generate electrical charges within the detector material.


There are several types of discrete detectors used in remote sensing, including:


-   Photodiodes:   These are semiconductor devices that generate a current when exposed to light. They are commonly used in many imaging systems.

-   Charge-Coupled Devices (CCDs):   These are arrays of tiny light-sensitive capacitors that store and transfer electrical charge. CCDs are widely used in digital cameras and remote sensing satellites.

-   CMOS Sensors:   Complementary Metal-Oxide-Semiconductor sensors are another type of image sensor used in digital cameras and some remote sensing instruments.


  Scanning Mirrors:  


Scanning mirrors are mechanical or electronic components used in remote sensing systems to direct the incoming electromagnetic radiation onto the detectors. They enable the sensor to observe different parts of the Earth's surface by changing the sensor's viewing direction. Scanning mirrors come in various forms and can be categorized into two main types:


1.   Mechanical Scanning Mirrors:   These are physical mirrors that are mechanically moved to redirect the sensor's field of view. There are different scanning patterns, including:

   -   Whiskbroom Scanning:   A single detector observes a narrow strip on the ground as the mirror sweeps back and forth.

   -   Pushbroom Scanning:   An array of detectors collects data as the mirror moves, creating a continuous strip of data over time.


2.   Electronic Scanning (Staring Array):   Instead of moving a physical mirror, this method uses an array of detectors, each observing a specific direction. By activating specific detectors, the system can effectively change its viewing direction electronically.


Scanning mirrors determine the spatial resolution, coverage area, and efficiency of data acquisition in a remote sensing system. Different scanning patterns and technologies are chosen based on the specific application and requirements of the mission.



Comments

Popular posts from this blog

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du cholĂ©ra dans Paris et le dĂ©partement de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Architecture of GIS

GIS architecture encompasses the overall design and organization of a Geographic Information System (GIS). The components of GIS architecture include hardware, software, data, people, and methods. The architecture determines how these components interact and work together to create an efficient GIS system. There are two main types of GIS architecture: client-server and web-based architecture. In client-server architecture, GIS software runs on a server and is accessed by users through client computers. The server is responsible for data storage, processing, and analysis, while the client is responsible for data visualization and user interaction. Multiple users can work on the same dataset simultaneously, making it ideal for collaborative work. In web-based architecture, the GIS software is accessed through a web browser, eliminating the need to install software on local machines. The GIS data and software are stored on a server and accessed through a web interface, making it ideal for...