Skip to main content

GIS Terminology



1. GIS (Geographic Information System): A system designed to capture, store, analyze, manage, and present spatial or geographic data.

2. Spatial Data: Information that describes the location, shape, and attributes of geographic features.

3. Attribute Data: Non-spatial information linked to geographic features in a GIS, stored in a tabular format.

4. Shapefile: A common GIS data format used to store vector data, including points, lines, and polygons.

5. Raster: A data format that represents geographic information as a grid of cells or pixels, often used for satellite imagery and elevation data.

6. Cartography: The art and science of mapmaking, including the design, production, and interpretation of maps.

7. Georeferencing: The process of aligning spatial data to a known coordinate system.

8. Coordinate System: A reference framework used to define locations on the Earth's surface using X, Y, and sometimes Z coordinates.

9. Latitude: Angular distance north or south of the equator, measured in degrees.

10. Longitude: Angular distance east or west of the prime meridian, measured in degrees.

11. Projection: A method used to convert the Earth's curved surface into a flat map.

12. Geocoding: The process of converting addresses into geographic coordinates (latitude and longitude).

13. Remote Sensing: The acquisition of information about the Earth's surface from a distance, often using satellites or aircraft.

14. GPS (Global Positioning System): A satellite-based navigation system that provides accurate location information.

15. GIS Analysis: The process of using spatial tools and functions to study patterns, relationships, and trends within geographic data.

16. Buffer: An area around a geographic feature, usually measured in a specified distance.

17. Overlay: Combining multiple layers of geographic data to create a new layer that preserves the information from the original layers.

18. Spatial Query: A method of retrieving data from a GIS based on spatial relationships or criteria.

19. Thematic Map: A map that displays the distribution of a specific attribute or theme, such as population density or temperature.

20. Topology: The spatial relationships and connectivity between geographic features.

21. GPS Tracking: Real-time monitoring of moving objects or people using GPS technology.

22. Spatial Index: An optimized data structure used to speed up spatial data queries.

23. Choropleth Map: A thematic map that uses different shades or patterns to represent data within predefined areas.

24. Geodatabase: A database designed to store, manage, and analyze geographic data.

25. Scale: The ratio between the distance on a map and the corresponding distance on the Earth's surface.

26. Metadata: Descriptive information about the characteristics and source of spatial data.

27. KML (Keyhole Markup Language): A file format used to display geographic data in Google Earth and other mapping applications.

28. Web GIS: GIS applications and services accessible through web browsers.

29. Spatial Analysis: The process of examining and modeling spatial patterns and relationships in GIS data.

30. Geoportal: An online platform that provides access to geographic data, maps, and services.

31. GPS Accuracy: The degree of closeness between the measured GPS location and the actual location on the Earth's surface.

32. Geospatial Intelligence (GEOINT): The use of geospatial data and analysis to support intelligence gathering and decision-making.

33. Lidar (Light Detection and Ranging): A remote sensing technology that uses laser pulses to measure distances and create 3D representations of the Earth's surface.

34. OpenStreetMap: A collaborative project that creates a free, editable map of the world, similar to Wikipedia.

35. Spatial Join: A GIS operation that combines attributes from two spatially related datasets based on their spatial location.

36. Data Visualization: The graphical representation of spatial data to communicate patterns and trends effectively.

37. Geographic Attribute Join: A process that combines attributes from one table with spatial data from another based on a common field.

38. Geofencing: Defining virtual boundaries around a location to trigger actions when something enters or exits the designated area.

39. GeoTIFF: A raster image format that includes georeferencing information.

40. GIS Server: A centralized platform that serves GIS data and performs spatial analyses.

41. Geoportal: A web-based platform that provides access to geospatial data and services.

42. GIScience (Geographic Information Science): The academic discipline focused on studying the concepts and methodologies of GIS.

43. Location-based Services (LBS): Services that use location information to provide specific content or functionality to users.

44. Geoprocessing: A set of operations used to manipulate and analyze geographic data in a GIS.

45. Map Projection Distortion: The inevitable alteration of shapes, areas, distances, or angles when representing the Earth's curved surface on a flat map.

46. Geotagging: Adding geographic location information (usually coordinates) to photos, videos, or other media.

47. Spatial Interpolation: The process of estimating values at unmeasured locations based on values at nearby measured locations.

48. Network Analysis: Analyzing and optimizing routes, paths, and connectivity within a transportation network.

49. Spatial Autocorrelation: A statistical measure that evaluates the degree of spatial clustering or dispersion of data.

50. Geospatial Data Infrastructure (GDI): The framework, policies, standards, and technologies for managing and sharing geospatial data.

51. Cadastral Data: Information about land ownership, boundaries, and property rights.

52. Geovisualization: Using interactive visual representations to explore and understand geographic data.

53. Web Mapping: The process of creating interactive maps accessible through web browsers.

54. Spatial Analyst: A software extension for performing spatial analysis in GIS.

55. Geodetic Datum: A reference framework used to define the Earth's shape and orientation for mapmaking.

56. Geocaching: A recreational activity that involves using GPS coordinates to hide and seek containers, known as "geocaches" or "caches."

57. Sentinel Satellite Program: A series of European Earth observation satellites providing valuable data for environmental monitoring.

58. GIS Application Programming Interface (API): A set of tools and protocols that allows developers to interact with GIS software and services.

59. Spatial Modeling: Building mathematical models to simulate real-world processes and phenomena.

60. Land Cover Classification: Categorizing the Earth's surface into different classes based on its characteristics (e.g., forests, urban areas, water bodies).

61. GPS Surveying: The use of GPS technology for precise positioning and data collection during surveying tasks.

62. Esri (Environmental Systems Research Institute): A leading company in GIS software development and solutions.

63. Geographic Information Science and Technology (GIST): The interdisciplinary study of geographic information, encompassing GIS, remote sensing, cartography, and spatial analysis.

64. Reverse Geocoding: The process of converting geographic coordinates into human-readable addresses.

65. Geospatial Metadata Standards: Guidelines for describing and documenting geospatial data.

66. Georeferenced Imagery: Images that have been spatially aligned to geographic coordinates.

67. Geodatabase Topology: Rules and relationships that

 maintain spatial integrity within a geodatabase.

68. Hotspot Analysis: Identifying areas with significantly high or low occurrences of specific phenomena.

69. Spatial Resolution: The level of detail represented in a raster or image, typically measured in meters or feet.

70. Geographic Information Officer (GIO): An executive-level position responsible for overseeing GIS implementation and strategy within an organization.

71. Spatial Data Infrastructure (SDI): The organizational, institutional, and technological framework for accessing and sharing spatial data.

72. TIN (Triangulated Irregular Network): A method for representing a surface using non-overlapping triangles.

73. Geoportal: A web-based platform that provides access to geospatial data and services.

74. Topographic Map: A detailed map representing natural and man-made features on the Earth's surface.

75. Geospatial Analysis: The process of using spatial tools and techniques to extract meaningful insights from geographic data.

76. Geospatial Metadata: Information about the characteristics and source of geospatial data.

77. GPS Data Collection: The process of gathering location-based data using GPS devices or smartphones.

78. Geospatial Web Services: Services that allow users to access and use geospatial data and functions over the internet.

79. GeoJSON: A data format used to represent geographical features in JSON (JavaScript Object Notation) format.

80. Thematic Layers: Layers in a GIS representing specific themes or attributes, such as land use, population density, or climate zones.

81. Geospatial Analysis Software: Software tools used for analyzing, visualizing, and interpreting geographic data.

82. GIS Software: Applications and tools that enable users to create, manage, and analyze geographic information.

83. Geospatial Big Data: Large volumes of geographically referenced data generated from various sources like sensors, mobile devices, and social media.

84. GIS Data Collection: The process of acquiring and recording geographic data from various sources.

85. Spatial Join: A GIS operation that combines attributes from two spatially related datasets based on their spatial location.

86. Spatial Analysis Functions: Mathematical operations and algorithms used to analyze spatial relationships and patterns.

87. GIS Database Management: The process of organizing, storing, and maintaining geographic data in a database.

88. Geographic Information Officer (GIO): An executive-level position responsible for overseeing GIS implementation and strategy within an organization.

89. Raster Analysis: Analyzing data in raster format to extract information or create new datasets.

90. Spatial Indexing: A technique used to speed up data retrieval and analysis in GIS by optimizing spatial queries.

91. Data Conversion: The process of transforming data from one format to another, such as converting a shapefile to a geodatabase feature class.

92. Geospatial Analysis Models: Mathematical or logical representations of real-world phenomena used for analysis in GIS.

93. Point Pattern Analysis: Analyzing the spatial arrangement of points to identify clusters or patterns.

94. Geodetic Surveying: Surveying methods that take into account the Earth's curvature and geodetic datum.

95. GPS Navigation: Using GPS technology for real-time navigation and route planning.

96. Map Projection Distortion: The inevitable alteration of shapes, areas, distances, or angles when representing the Earth's curved surface on a flat map.

97. Spatial Data Infrastructure (SDI): The organizational, institutional, and technological framework for accessing and sharing spatial data.

98. TIN (Triangulated Irregular Network): A method for representing a surface using non-overlapping triangles.

99. Remote Sensing Platforms: Satellites, aircraft, or drones used to collect remote sensing data.

100. Geocentric Datum: A reference framework that positions the Earth's center of mass as the coordinate origin, commonly used in global navigation applications.




Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Contrast Enhancement

Image enhancement is the process of improving the visual quality and interpretability of an image. The goal is not to change the physical meaning of the image data , but to make important features easier to identify for visual interpretation or automatic analysis (e.g., classification, feature extraction). In simple terms, image enhancement helps make an image clearer, sharper, and more informative for human eyes or computer algorithms. Purpose of Image Enhancement To improve visual appearance of images. To highlight specific features such as roads, rivers, vegetation, or built-up areas. To enhance contrast or brightness for better differentiation. To reduce noise or remove distortions. To prepare images for further processing like classification or edge detection. Common Image Enhancement Operations Image Reduction: Decreases the size or resolution of an image. Useful for faster processing or overview visualization. Image Mag...