Skip to main content

GIS Terminology



1. GIS (Geographic Information System): A system designed to capture, store, analyze, manage, and present spatial or geographic data.

2. Spatial Data: Information that describes the location, shape, and attributes of geographic features.

3. Attribute Data: Non-spatial information linked to geographic features in a GIS, stored in a tabular format.

4. Shapefile: A common GIS data format used to store vector data, including points, lines, and polygons.

5. Raster: A data format that represents geographic information as a grid of cells or pixels, often used for satellite imagery and elevation data.

6. Cartography: The art and science of mapmaking, including the design, production, and interpretation of maps.

7. Georeferencing: The process of aligning spatial data to a known coordinate system.

8. Coordinate System: A reference framework used to define locations on the Earth's surface using X, Y, and sometimes Z coordinates.

9. Latitude: Angular distance north or south of the equator, measured in degrees.

10. Longitude: Angular distance east or west of the prime meridian, measured in degrees.

11. Projection: A method used to convert the Earth's curved surface into a flat map.

12. Geocoding: The process of converting addresses into geographic coordinates (latitude and longitude).

13. Remote Sensing: The acquisition of information about the Earth's surface from a distance, often using satellites or aircraft.

14. GPS (Global Positioning System): A satellite-based navigation system that provides accurate location information.

15. GIS Analysis: The process of using spatial tools and functions to study patterns, relationships, and trends within geographic data.

16. Buffer: An area around a geographic feature, usually measured in a specified distance.

17. Overlay: Combining multiple layers of geographic data to create a new layer that preserves the information from the original layers.

18. Spatial Query: A method of retrieving data from a GIS based on spatial relationships or criteria.

19. Thematic Map: A map that displays the distribution of a specific attribute or theme, such as population density or temperature.

20. Topology: The spatial relationships and connectivity between geographic features.

21. GPS Tracking: Real-time monitoring of moving objects or people using GPS technology.

22. Spatial Index: An optimized data structure used to speed up spatial data queries.

23. Choropleth Map: A thematic map that uses different shades or patterns to represent data within predefined areas.

24. Geodatabase: A database designed to store, manage, and analyze geographic data.

25. Scale: The ratio between the distance on a map and the corresponding distance on the Earth's surface.

26. Metadata: Descriptive information about the characteristics and source of spatial data.

27. KML (Keyhole Markup Language): A file format used to display geographic data in Google Earth and other mapping applications.

28. Web GIS: GIS applications and services accessible through web browsers.

29. Spatial Analysis: The process of examining and modeling spatial patterns and relationships in GIS data.

30. Geoportal: An online platform that provides access to geographic data, maps, and services.

31. GPS Accuracy: The degree of closeness between the measured GPS location and the actual location on the Earth's surface.

32. Geospatial Intelligence (GEOINT): The use of geospatial data and analysis to support intelligence gathering and decision-making.

33. Lidar (Light Detection and Ranging): A remote sensing technology that uses laser pulses to measure distances and create 3D representations of the Earth's surface.

34. OpenStreetMap: A collaborative project that creates a free, editable map of the world, similar to Wikipedia.

35. Spatial Join: A GIS operation that combines attributes from two spatially related datasets based on their spatial location.

36. Data Visualization: The graphical representation of spatial data to communicate patterns and trends effectively.

37. Geographic Attribute Join: A process that combines attributes from one table with spatial data from another based on a common field.

38. Geofencing: Defining virtual boundaries around a location to trigger actions when something enters or exits the designated area.

39. GeoTIFF: A raster image format that includes georeferencing information.

40. GIS Server: A centralized platform that serves GIS data and performs spatial analyses.

41. Geoportal: A web-based platform that provides access to geospatial data and services.

42. GIScience (Geographic Information Science): The academic discipline focused on studying the concepts and methodologies of GIS.

43. Location-based Services (LBS): Services that use location information to provide specific content or functionality to users.

44. Geoprocessing: A set of operations used to manipulate and analyze geographic data in a GIS.

45. Map Projection Distortion: The inevitable alteration of shapes, areas, distances, or angles when representing the Earth's curved surface on a flat map.

46. Geotagging: Adding geographic location information (usually coordinates) to photos, videos, or other media.

47. Spatial Interpolation: The process of estimating values at unmeasured locations based on values at nearby measured locations.

48. Network Analysis: Analyzing and optimizing routes, paths, and connectivity within a transportation network.

49. Spatial Autocorrelation: A statistical measure that evaluates the degree of spatial clustering or dispersion of data.

50. Geospatial Data Infrastructure (GDI): The framework, policies, standards, and technologies for managing and sharing geospatial data.

51. Cadastral Data: Information about land ownership, boundaries, and property rights.

52. Geovisualization: Using interactive visual representations to explore and understand geographic data.

53. Web Mapping: The process of creating interactive maps accessible through web browsers.

54. Spatial Analyst: A software extension for performing spatial analysis in GIS.

55. Geodetic Datum: A reference framework used to define the Earth's shape and orientation for mapmaking.

56. Geocaching: A recreational activity that involves using GPS coordinates to hide and seek containers, known as "geocaches" or "caches."

57. Sentinel Satellite Program: A series of European Earth observation satellites providing valuable data for environmental monitoring.

58. GIS Application Programming Interface (API): A set of tools and protocols that allows developers to interact with GIS software and services.

59. Spatial Modeling: Building mathematical models to simulate real-world processes and phenomena.

60. Land Cover Classification: Categorizing the Earth's surface into different classes based on its characteristics (e.g., forests, urban areas, water bodies).

61. GPS Surveying: The use of GPS technology for precise positioning and data collection during surveying tasks.

62. Esri (Environmental Systems Research Institute): A leading company in GIS software development and solutions.

63. Geographic Information Science and Technology (GIST): The interdisciplinary study of geographic information, encompassing GIS, remote sensing, cartography, and spatial analysis.

64. Reverse Geocoding: The process of converting geographic coordinates into human-readable addresses.

65. Geospatial Metadata Standards: Guidelines for describing and documenting geospatial data.

66. Georeferenced Imagery: Images that have been spatially aligned to geographic coordinates.

67. Geodatabase Topology: Rules and relationships that

 maintain spatial integrity within a geodatabase.

68. Hotspot Analysis: Identifying areas with significantly high or low occurrences of specific phenomena.

69. Spatial Resolution: The level of detail represented in a raster or image, typically measured in meters or feet.

70. Geographic Information Officer (GIO): An executive-level position responsible for overseeing GIS implementation and strategy within an organization.

71. Spatial Data Infrastructure (SDI): The organizational, institutional, and technological framework for accessing and sharing spatial data.

72. TIN (Triangulated Irregular Network): A method for representing a surface using non-overlapping triangles.

73. Geoportal: A web-based platform that provides access to geospatial data and services.

74. Topographic Map: A detailed map representing natural and man-made features on the Earth's surface.

75. Geospatial Analysis: The process of using spatial tools and techniques to extract meaningful insights from geographic data.

76. Geospatial Metadata: Information about the characteristics and source of geospatial data.

77. GPS Data Collection: The process of gathering location-based data using GPS devices or smartphones.

78. Geospatial Web Services: Services that allow users to access and use geospatial data and functions over the internet.

79. GeoJSON: A data format used to represent geographical features in JSON (JavaScript Object Notation) format.

80. Thematic Layers: Layers in a GIS representing specific themes or attributes, such as land use, population density, or climate zones.

81. Geospatial Analysis Software: Software tools used for analyzing, visualizing, and interpreting geographic data.

82. GIS Software: Applications and tools that enable users to create, manage, and analyze geographic information.

83. Geospatial Big Data: Large volumes of geographically referenced data generated from various sources like sensors, mobile devices, and social media.

84. GIS Data Collection: The process of acquiring and recording geographic data from various sources.

85. Spatial Join: A GIS operation that combines attributes from two spatially related datasets based on their spatial location.

86. Spatial Analysis Functions: Mathematical operations and algorithms used to analyze spatial relationships and patterns.

87. GIS Database Management: The process of organizing, storing, and maintaining geographic data in a database.

88. Geographic Information Officer (GIO): An executive-level position responsible for overseeing GIS implementation and strategy within an organization.

89. Raster Analysis: Analyzing data in raster format to extract information or create new datasets.

90. Spatial Indexing: A technique used to speed up data retrieval and analysis in GIS by optimizing spatial queries.

91. Data Conversion: The process of transforming data from one format to another, such as converting a shapefile to a geodatabase feature class.

92. Geospatial Analysis Models: Mathematical or logical representations of real-world phenomena used for analysis in GIS.

93. Point Pattern Analysis: Analyzing the spatial arrangement of points to identify clusters or patterns.

94. Geodetic Surveying: Surveying methods that take into account the Earth's curvature and geodetic datum.

95. GPS Navigation: Using GPS technology for real-time navigation and route planning.

96. Map Projection Distortion: The inevitable alteration of shapes, areas, distances, or angles when representing the Earth's curved surface on a flat map.

97. Spatial Data Infrastructure (SDI): The organizational, institutional, and technological framework for accessing and sharing spatial data.

98. TIN (Triangulated Irregular Network): A method for representing a surface using non-overlapping triangles.

99. Remote Sensing Platforms: Satellites, aircraft, or drones used to collect remote sensing data.

100. Geocentric Datum: A reference framework that positions the Earth's center of mass as the coordinate origin, commonly used in global navigation applications.




Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...