Skip to main content

Thiessen polygons or Voronoi polygons or Thiessen tessellation

Thiessen polygons, also known as Voronoi polygons or Thiessen tessellation, are a fundamental concept in GIS that define the spatial extent of influence or control of a set of points or observation sites. They are named after the American meteorologist Alfred H. Thiessen, who introduced the concept in 1911.

The basic idea behind Thiessen polygons is to partition a geographic space into contiguous polygons based on proximity to a set of input points. Each polygon is assigned to the nearest point, and all locations within that polygon are closer to that particular point than to any other point in the dataset.

The construction of Thiessen polygons involves connecting the midpoints between each pair of adjacent points, forming perpendicular bisectors. These bisectors are extended to create a network of lines that delimit the boundaries of the polygons. Each polygon encompasses the area that is closer to its associated point than to any other point.

The resulting Thiessen polygons have several applications in GIS:

1. Spatial interpolation: Thiessen polygons can be used to interpolate values between points. The value at any location within a Thiessen polygon is assumed to be equal to the value at the associated point.

2. Network analysis: Thiessen polygons can be used to determine the service area or coverage of specific facilities, such as determining which customers are closest to a particular store or service location.

3. Hydrology and catchment delineation: Thiessen polygons can assist in delineating watersheds or catchment areas by assigning each stream gauge or monitoring point to its nearest catchment.

4. Resource allocation and planning: Thiessen polygons can aid in allocating resources or planning infrastructure by identifying areas of influence or control for specific facilities or services.

To create Thiessen polygons in GIS software, you can typically find a specific tool or function that generates them based on a given set of points. Once generated, the polygons can be analyzed and used for various spatial analyses within the GIS environment.

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud