Skip to main content

Spatial interpolation in GIS

Spatial interpolation is a method used in GIS (Geographic Information System) to estimate values at unknown locations within a geographic area based on values observed at known locations. It is commonly used to create continuous surfaces or maps from discrete point data.

Different techniques of spatial interpolation are employed to make these estimations. Here are some commonly used methods:


1. Inverse Distance Weighting (IDW): IDW assigns weights to the known data points based on their distances from the unknown location. The closer points receive higher weights, and the values at the unknown location are calculated as a weighted average of the known values. IDW assumes that nearby points have a stronger influence on the unknown location than those farther away.

2. Kriging: Kriging is a more advanced interpolation technique that considers both spatial autocorrelation and statistical analysis. It generates a prediction surface by estimating a semivariogram model, which describes the spatial correlation of the data. Kriging provides estimates with optimal accuracy and takes into account the spatial variability and the relationships between the data points. Variants of kriging include ordinary kriging, which assumes a constant mean, and universal kriging, which incorporates a trend component.

3. Radial Basis Functions (RBF): RBF interpolation uses mathematical functions to model the spatial variation between known points. It fits a smooth surface through the data points and evaluates the function at the unknown locations to estimate their values. RBF methods can handle irregularly distributed data points and effectively capture local variations.

4. Natural Neighbor Interpolation: This method calculates the value at an unknown location by considering the proximity of that location to the known points. It creates Voronoi polygons around each known point and uses the area overlap between the unknown location and the polygons to assign weights. Natural neighbor interpolation provides smoother results and avoids abrupt changes between neighboring areas.

5. Spline Interpolation: Splines are mathematical functions that interpolate between known data points to create a smooth surface. They minimize overall curvature and provide a visually appealing result. Spline interpolation can be performed using different approaches such as ordinary splines, tension splines, or B-splines.

6. Trend Surface Analysis: Trend surface analysis examines the trend or pattern present in the data and uses it to estimate values at unknown locations. It fits a polynomial surface to the known points, capturing the general trend and allowing for prediction beyond the data extent. Trend surface analysis can be useful when there is a clear spatial trend or gradient in the data.



These are some commonly used techniques for spatial interpolation in GIS. The choice of method depends on factors such as the nature of the data, the spatial distribution, the desired level of accuracy, and the specific objectives of the analysis. It's important to assess the strengths and limitations of each technique and select the most appropriate method for the given data and analysis requirements.

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...