Skip to main content

National Policy on EIA and Regulatory Framework

India's National Policy on Environmental Impact Assessment (EIA) and its regulatory framework are key components of the country's environmental governance system. The policy and regulations aim to ensure the sustainable development of various projects while minimizing their adverse environmental impacts. Let's explore these aspects in more detail:

1. Environmental Impact Assessment (EIA):
The EIA process is a systematic evaluation of the potential environmental consequences of proposed development projects. It helps identify and mitigate the adverse impacts and enhances the project's overall sustainability. In India, the EIA process is guided by the EIA Notification issued under the Environment (Protection) Act, 1986.

2. EIA Notification:
The EIA Notification serves as the primary regulatory framework for conducting environmental impact assessments in India. The notification outlines the procedures, requirements, and criteria for project appraisal and clearance. It categorizes projects into two broad categories: Category A and Category B, based on their potential environmental impacts.

- Category A projects: These projects are likely to have significant environmental and social impacts. They require a thorough Environmental Impact Assessment report, public consultation, and clearance from the Ministry of Environment, Forest and Climate Change (MoEFCC) at the central level.
- Category B projects: These projects have lesser environmental impacts. They follow a streamlined EIA process with less rigorous requirements. The clearance authority for Category B projects can be either the State Environment Impact Assessment Authority (SEIAA) or the State Level Expert Appraisal Committee (SEAC).

3. EIA Process:
The EIA process involves several stages, including project screening, scoping, public consultation, assessment, review, decision-making, and post-clearance monitoring. The process generally includes the following steps:

- Screening: Determines whether a proposed project falls under Category A or B.
- Scoping: Identifies the potential environmental impacts and parameters to be studied during the EIA process.
- Public Consultation: Involves seeking public opinions, concerns, and suggestions on the project's potential environmental impacts.
- Impact Assessment: Evaluates the project's environmental impacts and proposes mitigation measures.
- Review: Expert committees review the EIA reports and make recommendations.
- Decision-making: The competent authority grants or rejects the environmental clearance based on the EIA findings.
- Post-clearance Monitoring: Projects require regular monitoring to ensure compliance with environmental conditions.

4. Public Participation:
India's EIA framework emphasizes public participation throughout the decision-making process. It provides opportunities for stakeholders, including local communities, NGOs, and experts, to voice their concerns, opinions, and suggestions. Public hearings and consultations are conducted at various stages to ensure transparency and accountability.

5. Environmental Clearance:
Based on the EIA process and recommendations from expert committees, the competent authority grants or rejects environmental clearance for projects. Clearance may be subject to certain conditions and mitigation measures to address potential environmental impacts.

It's important to note that the information provided here is based on the knowledge available up to September 2021. The policies and regulations regarding EIA in India are subject to updates and revisions. For the most current and accurate information, it is recommended to refer to the official government sources and notifications.




Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...