Skip to main content

National Policy on EIA and Regulatory Framework

India's National Policy on Environmental Impact Assessment (EIA) and its regulatory framework are key components of the country's environmental governance system. The policy and regulations aim to ensure the sustainable development of various projects while minimizing their adverse environmental impacts. Let's explore these aspects in more detail:

1. Environmental Impact Assessment (EIA):
The EIA process is a systematic evaluation of the potential environmental consequences of proposed development projects. It helps identify and mitigate the adverse impacts and enhances the project's overall sustainability. In India, the EIA process is guided by the EIA Notification issued under the Environment (Protection) Act, 1986.

2. EIA Notification:
The EIA Notification serves as the primary regulatory framework for conducting environmental impact assessments in India. The notification outlines the procedures, requirements, and criteria for project appraisal and clearance. It categorizes projects into two broad categories: Category A and Category B, based on their potential environmental impacts.

- Category A projects: These projects are likely to have significant environmental and social impacts. They require a thorough Environmental Impact Assessment report, public consultation, and clearance from the Ministry of Environment, Forest and Climate Change (MoEFCC) at the central level.
- Category B projects: These projects have lesser environmental impacts. They follow a streamlined EIA process with less rigorous requirements. The clearance authority for Category B projects can be either the State Environment Impact Assessment Authority (SEIAA) or the State Level Expert Appraisal Committee (SEAC).

3. EIA Process:
The EIA process involves several stages, including project screening, scoping, public consultation, assessment, review, decision-making, and post-clearance monitoring. The process generally includes the following steps:

- Screening: Determines whether a proposed project falls under Category A or B.
- Scoping: Identifies the potential environmental impacts and parameters to be studied during the EIA process.
- Public Consultation: Involves seeking public opinions, concerns, and suggestions on the project's potential environmental impacts.
- Impact Assessment: Evaluates the project's environmental impacts and proposes mitigation measures.
- Review: Expert committees review the EIA reports and make recommendations.
- Decision-making: The competent authority grants or rejects the environmental clearance based on the EIA findings.
- Post-clearance Monitoring: Projects require regular monitoring to ensure compliance with environmental conditions.

4. Public Participation:
India's EIA framework emphasizes public participation throughout the decision-making process. It provides opportunities for stakeholders, including local communities, NGOs, and experts, to voice their concerns, opinions, and suggestions. Public hearings and consultations are conducted at various stages to ensure transparency and accountability.

5. Environmental Clearance:
Based on the EIA process and recommendations from expert committees, the competent authority grants or rejects environmental clearance for projects. Clearance may be subject to certain conditions and mitigation measures to address potential environmental impacts.

It's important to note that the information provided here is based on the knowledge available up to September 2021. The policies and regulations regarding EIA in India are subject to updates and revisions. For the most current and accurate information, it is recommended to refer to the official government sources and notifications.




Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...