Skip to main content

National Policy on EIA and Regulatory Framework

India's National Policy on Environmental Impact Assessment (EIA) and its regulatory framework are key components of the country's environmental governance system. The policy and regulations aim to ensure the sustainable development of various projects while minimizing their adverse environmental impacts. Let's explore these aspects in more detail:

1. Environmental Impact Assessment (EIA):
The EIA process is a systematic evaluation of the potential environmental consequences of proposed development projects. It helps identify and mitigate the adverse impacts and enhances the project's overall sustainability. In India, the EIA process is guided by the EIA Notification issued under the Environment (Protection) Act, 1986.

2. EIA Notification:
The EIA Notification serves as the primary regulatory framework for conducting environmental impact assessments in India. The notification outlines the procedures, requirements, and criteria for project appraisal and clearance. It categorizes projects into two broad categories: Category A and Category B, based on their potential environmental impacts.

- Category A projects: These projects are likely to have significant environmental and social impacts. They require a thorough Environmental Impact Assessment report, public consultation, and clearance from the Ministry of Environment, Forest and Climate Change (MoEFCC) at the central level.
- Category B projects: These projects have lesser environmental impacts. They follow a streamlined EIA process with less rigorous requirements. The clearance authority for Category B projects can be either the State Environment Impact Assessment Authority (SEIAA) or the State Level Expert Appraisal Committee (SEAC).

3. EIA Process:
The EIA process involves several stages, including project screening, scoping, public consultation, assessment, review, decision-making, and post-clearance monitoring. The process generally includes the following steps:

- Screening: Determines whether a proposed project falls under Category A or B.
- Scoping: Identifies the potential environmental impacts and parameters to be studied during the EIA process.
- Public Consultation: Involves seeking public opinions, concerns, and suggestions on the project's potential environmental impacts.
- Impact Assessment: Evaluates the project's environmental impacts and proposes mitigation measures.
- Review: Expert committees review the EIA reports and make recommendations.
- Decision-making: The competent authority grants or rejects the environmental clearance based on the EIA findings.
- Post-clearance Monitoring: Projects require regular monitoring to ensure compliance with environmental conditions.

4. Public Participation:
India's EIA framework emphasizes public participation throughout the decision-making process. It provides opportunities for stakeholders, including local communities, NGOs, and experts, to voice their concerns, opinions, and suggestions. Public hearings and consultations are conducted at various stages to ensure transparency and accountability.

5. Environmental Clearance:
Based on the EIA process and recommendations from expert committees, the competent authority grants or rejects environmental clearance for projects. Clearance may be subject to certain conditions and mitigation measures to address potential environmental impacts.

It's important to note that the information provided here is based on the knowledge available up to September 2021. The policies and regulations regarding EIA in India are subject to updates and revisions. For the most current and accurate information, it is recommended to refer to the official government sources and notifications.




Comments

Popular posts from this blog

Groundwater – Porosity and Permeability

Groundwater refers to the water that resides beneath the Earth's surface in the pores and crevices of rock, sediment, and soil. Two key properties that influence the movement and storage of groundwater are porosity and permeability: 1. Porosity:    - Definition: Porosity refers to the volume percentage of void spaces (pores or openings) in a geological material, such as soil or rock.    - Role: Porosity determines how much water a subsurface material can hold. It is a measure of the material's capacity to store water.    - Factors: Porosity is influenced by the size and arrangement of particles within the material. Highly porous materials have more void spaces, while less porous materials have fewer.    - Units: Porosity is expressed as a percentage, with 0% indicating complete solidity (no pore spaces) and 100% indicating complete void space. 2. Permeability:    - Definition: Permeability refers to the ability of a geological material to transmit fluids, such as water. It meas

Ground Water

Groundwater Terminology, Concepts, and Facts Key Terms Aquifer: A geological formation that can store and transmit significant quantities of water. Water Table: The upper surface of the saturated zone in an aquifer. Recharge: The process of replenishing groundwater through precipitation or other sources. Discharge: The process of groundwater flowing out of an aquifer, typically into surface water bodies or through wells. Hydraulic Gradient: The slope of the water table. Darcy's Law: A law that describes the flow of groundwater through porous media. Permeability: The ability of a material to transmit water. Porosity: The amount of void space in a material. Concepts Groundwater Flow: Groundwater moves from areas of higher hydraulic head to areas of lower hydraulic head. Groundwater Contamination: The introduction of pollutants into groundwater. Groundwater Depletion: The excessive extraction of groundwater, leading to a decline in water table levels. Saltwater Intrusion:

Artisan Wells Basins

Artisan Wells and Basins Artesian wells are a type of well that harnesses the natural pressure of water trapped underground to force water to the surface without pumping. This phenomenon occurs in specific geological formations known as artesian basins . Key Terminologies and Concepts Aquifer: A geological formation that can store and transmit water. It is typically made up of porous rocks or sediments like sandstone or gravel. Confined Aquifer: An aquifer that is sandwiched between two impermeable layers (like clay or shale) that prevent water from escaping. Artesian Basin: A geological structure where a confined aquifer is tilted and has a recharge area at a higher elevation than the discharge area. This creates a pressure gradient that forces water to flow upwards. Potentiometric Surface: The theoretical level to which water would rise in a well drilled into an artesian aquifer if there were no restrictions. It is determined by the pressure head in the aquifer. Flowing Artesian

Watershed. Catchment. Basin

A watershed, also known as a river basin or drainage basin, is a fundamental concept in geohydrology and hydrology. It refers to a specific geographic area or region of land where all the surface water, including rainfall, snowmelt, and runoff, drains into a common outlet, such as a river, lake, or ocean. Here's an explanation of each term: 1. Watershed: A watershed is essentially a natural hydrological unit defined by the topography of the land. It represents the entire area from which all precipitation and surface water flow eventually gathers at a single point. This point is typically where the main river or stream within the watershed exits into a larger body of water, such as an ocean. Watersheds come in various sizes, from small ones that encompass a few square miles to enormous ones that cover entire continents. 2. River/Drainage Basin: A river basin or drainage basin is another way to describe a watershed. It's the land area that collects and channels water into a river

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t