Skip to main content

National Green Tribunal and NGT act

The National Green Tribunal (NGT) is a specialized judicial body established in India under the National Green Tribunal Act, 2010. It was formed to handle cases related to environmental protection, conservation of natural resources, and the enforcement of environmental laws in the country. The NGT aims to provide an effective and expeditious legal mechanism to address environmental disputes and promote sustainable development.

Key features of the National Green Tribunal and the NGT Act are as follows:

1. Establishment and Composition:
The NGT was established on October 18, 2010, following the passing of the National Green Tribunal Act by the Parliament of India. The tribunal consists of both judicial and expert members. The chairperson of the NGT is a retired judge of the Supreme Court of India or a High Court, and the other members include judicial and expert members with knowledge and experience in environmental matters.

2. Jurisdiction:
The NGT has jurisdiction over a wide range of environmental matters. It hears cases and adjudicates on issues related to the enforcement of environmental laws, including violations of pollution control measures, forest conservation, biodiversity, water and air pollution, industrial and developmental projects, and other environmental disputes.

3. Powers and Functions:
The NGT has been granted extensive powers to carry out its functions effectively. Some key powers and functions of the NGT include:

- Adjudication: The NGT has the authority to hear and decide cases related to environmental violations and disputes. It has the same powers as a civil court, including the power to summon and enforce the attendance of witnesses, examine them on oath, and compel the discovery and production of documents.
- Relief and Compensation: The NGT can provide appropriate relief and compensation to the affected parties in cases of environmental damage or pollution.
- Review and Appeals: The NGT's decisions can be challenged through review petitions before the tribunal itself or through appeals to the Supreme Court of India.

4. Powers to Issue Directions:
The NGT can issue various directions and orders to enforce environmental laws and protect the environment. It has the authority to issue interim orders, restraining orders, and directives to halt or modify activities causing environmental harm.

5. Appellate Authority:
The NGT Act also establishes the National Green Tribunal Appellate Authority (NGTAA). The NGTAA hears appeals against orders or decisions of environmental regulators and authorities issued under environmental laws.

The National Green Tribunal has been instrumental in providing a specialized forum for addressing environmental disputes in India and expediting the resolution of environmental issues. Its establishment and functioning have helped enhance environmental governance, promote sustainable development, and protect and preserve the country's natural resources.

Please note that while the information provided here is accurate to the best of my knowledge up to September 2021, it's always recommended to refer to the official sources and the latest amendments to the NGT Act for the most up-to-date and accurate information.





Comments

Popular posts from this blog

Groundwater – Porosity and Permeability

Groundwater refers to the water that resides beneath the Earth's surface in the pores and crevices of rock, sediment, and soil. Two key properties that influence the movement and storage of groundwater are porosity and permeability: 1. Porosity:    - Definition: Porosity refers to the volume percentage of void spaces (pores or openings) in a geological material, such as soil or rock.    - Role: Porosity determines how much water a subsurface material can hold. It is a measure of the material's capacity to store water.    - Factors: Porosity is influenced by the size and arrangement of particles within the material. Highly porous materials have more void spaces, while less porous materials have fewer.    - Units: Porosity is expressed as a percentage, with 0% indicating complete solidity (no pore spaces) and 100% indicating complete void space. 2. Permeability:    - Definition: Permeability refers to the ability of a geological material to transmit fluids, such as water. It meas

Ground Water

Groundwater Terminology, Concepts, and Facts Key Terms Aquifer: A geological formation that can store and transmit significant quantities of water. Water Table: The upper surface of the saturated zone in an aquifer. Recharge: The process of replenishing groundwater through precipitation or other sources. Discharge: The process of groundwater flowing out of an aquifer, typically into surface water bodies or through wells. Hydraulic Gradient: The slope of the water table. Darcy's Law: A law that describes the flow of groundwater through porous media. Permeability: The ability of a material to transmit water. Porosity: The amount of void space in a material. Concepts Groundwater Flow: Groundwater moves from areas of higher hydraulic head to areas of lower hydraulic head. Groundwater Contamination: The introduction of pollutants into groundwater. Groundwater Depletion: The excessive extraction of groundwater, leading to a decline in water table levels. Saltwater Intrusion:

Artisan Wells Basins

Artisan Wells and Basins Artesian wells are a type of well that harnesses the natural pressure of water trapped underground to force water to the surface without pumping. This phenomenon occurs in specific geological formations known as artesian basins . Key Terminologies and Concepts Aquifer: A geological formation that can store and transmit water. It is typically made up of porous rocks or sediments like sandstone or gravel. Confined Aquifer: An aquifer that is sandwiched between two impermeable layers (like clay or shale) that prevent water from escaping. Artesian Basin: A geological structure where a confined aquifer is tilted and has a recharge area at a higher elevation than the discharge area. This creates a pressure gradient that forces water to flow upwards. Potentiometric Surface: The theoretical level to which water would rise in a well drilled into an artesian aquifer if there were no restrictions. It is determined by the pressure head in the aquifer. Flowing Artesian

Watershed. Catchment. Basin

A watershed, also known as a river basin or drainage basin, is a fundamental concept in geohydrology and hydrology. It refers to a specific geographic area or region of land where all the surface water, including rainfall, snowmelt, and runoff, drains into a common outlet, such as a river, lake, or ocean. Here's an explanation of each term: 1. Watershed: A watershed is essentially a natural hydrological unit defined by the topography of the land. It represents the entire area from which all precipitation and surface water flow eventually gathers at a single point. This point is typically where the main river or stream within the watershed exits into a larger body of water, such as an ocean. Watersheds come in various sizes, from small ones that encompass a few square miles to enormous ones that cover entire continents. 2. River/Drainage Basin: A river basin or drainage basin is another way to describe a watershed. It's the land area that collects and channels water into a river

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t