Skip to main content

National Green Tribunal and NGT act

The National Green Tribunal (NGT) is a specialized judicial body established in India under the National Green Tribunal Act, 2010. It was formed to handle cases related to environmental protection, conservation of natural resources, and the enforcement of environmental laws in the country. The NGT aims to provide an effective and expeditious legal mechanism to address environmental disputes and promote sustainable development.

Key features of the National Green Tribunal and the NGT Act are as follows:

1. Establishment and Composition:
The NGT was established on October 18, 2010, following the passing of the National Green Tribunal Act by the Parliament of India. The tribunal consists of both judicial and expert members. The chairperson of the NGT is a retired judge of the Supreme Court of India or a High Court, and the other members include judicial and expert members with knowledge and experience in environmental matters.

2. Jurisdiction:
The NGT has jurisdiction over a wide range of environmental matters. It hears cases and adjudicates on issues related to the enforcement of environmental laws, including violations of pollution control measures, forest conservation, biodiversity, water and air pollution, industrial and developmental projects, and other environmental disputes.

3. Powers and Functions:
The NGT has been granted extensive powers to carry out its functions effectively. Some key powers and functions of the NGT include:

- Adjudication: The NGT has the authority to hear and decide cases related to environmental violations and disputes. It has the same powers as a civil court, including the power to summon and enforce the attendance of witnesses, examine them on oath, and compel the discovery and production of documents.
- Relief and Compensation: The NGT can provide appropriate relief and compensation to the affected parties in cases of environmental damage or pollution.
- Review and Appeals: The NGT's decisions can be challenged through review petitions before the tribunal itself or through appeals to the Supreme Court of India.

4. Powers to Issue Directions:
The NGT can issue various directions and orders to enforce environmental laws and protect the environment. It has the authority to issue interim orders, restraining orders, and directives to halt or modify activities causing environmental harm.

5. Appellate Authority:
The NGT Act also establishes the National Green Tribunal Appellate Authority (NGTAA). The NGTAA hears appeals against orders or decisions of environmental regulators and authorities issued under environmental laws.

The National Green Tribunal has been instrumental in providing a specialized forum for addressing environmental disputes in India and expediting the resolution of environmental issues. Its establishment and functioning have helped enhance environmental governance, promote sustainable development, and protect and preserve the country's natural resources.

Please note that while the information provided here is accurate to the best of my knowledge up to September 2021, it's always recommended to refer to the official sources and the latest amendments to the NGT Act for the most up-to-date and accurate information.





Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...