Skip to main content

Kriging in GIS and variogram

Kriging is an advanced spatial interpolation technique used in GIS (Geographic Information System) that estimates values for unknown locations based on the values observed at nearby known locations. It is a geostatistical method that takes into account not only the distances between points but also the spatial correlation or variability in the data.

Unlike simpler interpolation methods like IDW, which assume a constant variation across the study area, kriging incorporates the spatial autocorrelation of the data to produce more accurate and precise estimates. Kriging considers the spatial arrangement and patterns of the data points to generate a surface that honors the underlying spatial structure.

The key principle behind kriging is the variogram, which quantifies the spatial correlation between pairs of points at different distances. The variogram measures how the values of nearby points vary from each other as a function of distance. It provides information about the spatial dependence or variability in the dataset.

The kriging process involves three main steps:

1. Variogram modeling: The first step in kriging is to construct a variogram, which is a plot of the semivariance (a measure of dissimilarity or variability) against distance or lag between pairs of points. The variogram helps to understand the spatial structure of the data and determine the range, sill, and nugget effect. Based on the variogram, a mathematical model is fitted to describe the spatial correlation.

2. Interpolation: Once the variogram is modeled, kriging calculates the weights or coefficients for the known points based on their spatial relationship to the target location. The weights are determined through a process known as kriging equations, which consider the variogram and covariance between points. These equations generate the optimal weights that minimize the prediction error.

   - Ordinary Kriging (OK): Assumes a constant mean value across the study area.
   - Simple Kriging (SK): Accounts for an unknown mean value, estimating it from the data.
   - Universal Kriging (UK): Incorporates additional spatially correlated variables (covariates) in addition to the location coordinates.

3. Prediction: The final step is the estimation of values at the unknown locations using the calculated weights. Kriging provides not only the predicted values but also the estimation error or uncertainty associated with each prediction. This information can be valuable in decision-making processes.

Kriging is particularly useful when dealing with spatial datasets that exhibit spatial autocorrelation, anisotropy (directional dependence), or irregularly spaced points. It provides a more sophisticated approach to spatial interpolation by considering the inherent spatial relationships in the data.

GIS software typically provides various kriging algorithms and tools that allow users to model the variogram, perform the interpolation, and generate kriging predictions and associated error maps.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Trans-Himalayas

  1. Location and Extent The Trans-Himalayas , also known as the Tibetan Himalayas , form the northernmost mountain system of India . Stretching in an east–west alignment , they run parallel to the Greater Himalayas , covering: Ladakh (Jammu & Kashmir, UT) Himachal Pradesh (north parts) Tibet (China) They mark the southern boundary of the Tibetan Plateau and act as a transition zone between the Indian Subcontinent and Central Asia . 2. Major Ranges within the Trans-Himalayas Karakoram Range World's second highest peak: K2 (8,611 m) . Contains Siachen Glacier and Baltoro Glacier . Geopolitical importance: forms part of India–Pakistan–China border. Ladakh Range Separates the Indus Valley from the Tibetan Plateau . Known for rugged barren mountains and cold desert conditions. Zanskar Range Lies south of the Ladakh Range, cut deeply by the Zanskar River . Famous for trekking and frozen river expeditions...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...