Skip to main content

Kriging in GIS and variogram

Kriging is an advanced spatial interpolation technique used in GIS (Geographic Information System) that estimates values for unknown locations based on the values observed at nearby known locations. It is a geostatistical method that takes into account not only the distances between points but also the spatial correlation or variability in the data.

Unlike simpler interpolation methods like IDW, which assume a constant variation across the study area, kriging incorporates the spatial autocorrelation of the data to produce more accurate and precise estimates. Kriging considers the spatial arrangement and patterns of the data points to generate a surface that honors the underlying spatial structure.

The key principle behind kriging is the variogram, which quantifies the spatial correlation between pairs of points at different distances. The variogram measures how the values of nearby points vary from each other as a function of distance. It provides information about the spatial dependence or variability in the dataset.

The kriging process involves three main steps:

1. Variogram modeling: The first step in kriging is to construct a variogram, which is a plot of the semivariance (a measure of dissimilarity or variability) against distance or lag between pairs of points. The variogram helps to understand the spatial structure of the data and determine the range, sill, and nugget effect. Based on the variogram, a mathematical model is fitted to describe the spatial correlation.

2. Interpolation: Once the variogram is modeled, kriging calculates the weights or coefficients for the known points based on their spatial relationship to the target location. The weights are determined through a process known as kriging equations, which consider the variogram and covariance between points. These equations generate the optimal weights that minimize the prediction error.

   - Ordinary Kriging (OK): Assumes a constant mean value across the study area.
   - Simple Kriging (SK): Accounts for an unknown mean value, estimating it from the data.
   - Universal Kriging (UK): Incorporates additional spatially correlated variables (covariates) in addition to the location coordinates.

3. Prediction: The final step is the estimation of values at the unknown locations using the calculated weights. Kriging provides not only the predicted values but also the estimation error or uncertainty associated with each prediction. This information can be valuable in decision-making processes.

Kriging is particularly useful when dealing with spatial datasets that exhibit spatial autocorrelation, anisotropy (directional dependence), or irregularly spaced points. It provides a more sophisticated approach to spatial interpolation by considering the inherent spatial relationships in the data.

GIS software typically provides various kriging algorithms and tools that allow users to model the variogram, perform the interpolation, and generate kriging predictions and associated error maps.

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...