Skip to main content

Kriging in GIS and variogram

Kriging is an advanced spatial interpolation technique used in GIS (Geographic Information System) that estimates values for unknown locations based on the values observed at nearby known locations. It is a geostatistical method that takes into account not only the distances between points but also the spatial correlation or variability in the data.

Unlike simpler interpolation methods like IDW, which assume a constant variation across the study area, kriging incorporates the spatial autocorrelation of the data to produce more accurate and precise estimates. Kriging considers the spatial arrangement and patterns of the data points to generate a surface that honors the underlying spatial structure.

The key principle behind kriging is the variogram, which quantifies the spatial correlation between pairs of points at different distances. The variogram measures how the values of nearby points vary from each other as a function of distance. It provides information about the spatial dependence or variability in the dataset.

The kriging process involves three main steps:

1. Variogram modeling: The first step in kriging is to construct a variogram, which is a plot of the semivariance (a measure of dissimilarity or variability) against distance or lag between pairs of points. The variogram helps to understand the spatial structure of the data and determine the range, sill, and nugget effect. Based on the variogram, a mathematical model is fitted to describe the spatial correlation.

2. Interpolation: Once the variogram is modeled, kriging calculates the weights or coefficients for the known points based on their spatial relationship to the target location. The weights are determined through a process known as kriging equations, which consider the variogram and covariance between points. These equations generate the optimal weights that minimize the prediction error.

   - Ordinary Kriging (OK): Assumes a constant mean value across the study area.
   - Simple Kriging (SK): Accounts for an unknown mean value, estimating it from the data.
   - Universal Kriging (UK): Incorporates additional spatially correlated variables (covariates) in addition to the location coordinates.

3. Prediction: The final step is the estimation of values at the unknown locations using the calculated weights. Kriging provides not only the predicted values but also the estimation error or uncertainty associated with each prediction. This information can be valuable in decision-making processes.

Kriging is particularly useful when dealing with spatial datasets that exhibit spatial autocorrelation, anisotropy (directional dependence), or irregularly spaced points. It provides a more sophisticated approach to spatial interpolation by considering the inherent spatial relationships in the data.

GIS software typically provides various kriging algorithms and tools that allow users to model the variogram, perform the interpolation, and generate kriging predictions and associated error maps.

Comments

Popular posts from this blog

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...