Skip to main content

International Protocols. Environment conservation 🌲

International protocols related to the environment are agreements or treaties that are negotiated and adopted by multiple countries to address specific environmental issues. These protocols serve as frameworks for cooperation and action, outlining the obligations and commitments of participating countries. Here are a few notable international protocols related to the environment:

1. Kyoto Protocol (1997): The Kyoto Protocol is an international treaty under the United Nations Framework Convention on Climate Change (UNFCCC). It aimed to combat global warming by setting binding emission reduction targets for developed countries. The protocol introduced the concept of carbon trading and established mechanisms for countries to achieve their targets through emissions trading, clean development projects, and joint implementation.

2. Montreal Protocol (1987): The Montreal Protocol on Substances that Deplete the Ozone Layer is a global environmental agreement. It aims to protect the ozone layer by phasing out the production and consumption of ozone-depleting substances (ODS), such as chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). The protocol has been successful in reducing ODS production and has contributed to the recovery of the ozone layer.

3. Cartagena Protocol on Biosafety (2000): The Cartagena Protocol on Biosafety is a supplementary agreement to the Convention on Biological Diversity (CBD). It addresses the safe transfer, handling, and use of living genetically modified organisms (GMOs) that may have adverse effects on biodiversity. The protocol promotes transparency, information sharing, and risk assessment in the field of biotechnology to ensure the safe handling of GMOs.

4. Basel Convention (1989): The Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal is an international treaty that aims to minimize the generation and movement of hazardous wastes. The convention promotes environmentally sound management of hazardous wastes, regulates their transboundary movement, and encourages countries to minimize waste generation and promote waste recycling and disposal.

5. Aarhus Convention (1998): The Aarhus Convention, also known as the Convention on Access to Information, Public Participation in Decision-making, and Access to Justice in Environmental Matters, aims to promote environmental democracy. The convention grants the public the right to access environmental information, participate in decision-making processes, and access justice in environmental matters. It encourages transparency and public involvement in environmental governance.

These are just a few examples of international protocols related to the environment. There are many other agreements and treaties that address specific environmental issues, such as biodiversity conservation, marine pollution, desertification, and sustainable development. These protocols play a crucial role in fostering international cooperation, setting standards, and guiding countries' actions to address global environmental challenges.

🌏


Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...

vector data analysis in GIS Surface Analysis – Interpolation – IDW

1. Surface Analysis 🗺️ This is when we try to understand and visualize how a value changes across a surface (like land). The values might be temperature, rainfall, elevation, pollution levels, etc. We often start with only some points where we know the value, but we want to guess the values everywhere in between. 2. Interpolation 📍➡️📍 Interpolation is a way of estimating unknown values between known points. Imagine you know the temperature at a few weather stations, but you want to know the temperature everywhere in between. GIS uses math to "fill in the blanks" between the points. 3. IDW (Inverse Distance Weighted) 🎯 One popular interpolation method. The idea: Points that are closer to you have more influence than points farther away. Example: If you're standing between two rain gauges, the closer one's reading will affect your estimated rainfall more than the farther one. "Inverse Distance" means: The ...