Skip to main content

IDW. Inverse Distance Weighting

IDW (Inverse Distance Weighting) is a commonly used spatial interpolation technique in GIS (Geographic Information System) that estimates values for unknown locations based on the values observed at nearby known locations. It assumes that the influence of a known point on an unknown location decreases as the distance between them increases.

The IDW interpolation method assigns weights to the surrounding points based on their distances to the target location. The closer a known point is to the target location, the higher its weight and influence on the estimated value. The formula for IDW is as follows:

\[Z(x) = \frac{{\sum_{i=1}^{n} w_i \cdot Z_i}}{{\sum_{i=1}^{n} w_i}}\]

Where:
- \(Z(x)\) is the estimated value at the target location,
- \(Z_i\) is the known value at the ith location,
- \(w_i\) is the weight assigned to the ith location, calculated based on the distance between the target location and the known location.

The weight assigned to each point is typically determined using a power parameter, often denoted as \(p\) or \(s\). The power parameter controls the rate at which the influence of a point diminishes with increasing distance. A higher power value results in a faster decrease in influence with distance.

IDW is widely used because of its simplicity and intuitive nature. However, it does have some limitations. For instance:

1. Sensitivity to data distribution: IDW assumes a smooth variation of values between points. If the data is clustered or exhibits abrupt changes, IDW may not provide accurate results.

2. Influence of outliers: Outliers or extreme values can have a significant impact on the estimated values, as IDW assigns weights solely based on distance. This can lead to oversensitivity to outliers.

3. Arbitrary selection of the power parameter: The choice of the power parameter is somewhat subjective and can influence the results. Different power values can lead to different interpolation surfaces, so it is essential to evaluate the sensitivity of results to the power parameter.

Despite these limitations, IDW remains a useful interpolation method, particularly when applied in situations where the underlying assumptions align well with the data characteristics. It is commonly used in various fields, such as environmental modeling, agriculture, geology, and urban planning.

GIS software usually provides tools to perform IDW interpolation, allowing users to specify the power parameter, input point locations, and their associated values. The result is a continuous surface that represents the estimated values for the entire study area.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...