Skip to main content

Cartogram. πŸŒπŸŒŽπŸŒπŸ—Ί️


A cartogram is a unique type of map that depicts geographic or political data by distorting the size or shape of regions, typically using statistical information rather than physical land area. Unlike traditional maps that represent areas in proportion to their actual size, cartograms alter the sizes of regions based on the data being presented.

The primary purpose of a cartogram is to emphasize a specific attribute or variable, such as population, GDP, or election results, by visually magnifying or reducing the areas of the regions accordingly. This distortion allows viewers to quickly grasp patterns or disparities in the data across different regions.

Creating a cartogram involves a two-step process. First, a base map is established, usually using a traditional reference map or a geographic framework with recognizable boundaries. Second, the statistical data to be represented is integrated into the map, resulting in the distortion of the regions.

There are various techniques for generating cartograms, but two commonly used approaches are the area cartogram and the distance cartogram. 

- Area cartograms adjust the sizes of regions based on the magnitude of the variable being represented. Larger values result in larger areas, while smaller values lead to smaller areas. This method ensures that the overall map area remains constant, maintaining the geographic context.
 
- Distance cartograms modify the shapes and positions of regions to reflect the relationship between the variables being portrayed. Regions with higher values are placed closer together, while those with lower values are pushed apart. The distances between regions may be altered while still preserving a recognizable geographic layout.

Cartograms can provide powerful visualizations that highlight spatial patterns and inequalities that may not be immediately apparent on a traditional map. They are often used in disciplines such as sociology, economics, politics, and demography to convey complex data and facilitate comparisons between regions.

However, it's important to note that cartograms inherently sacrifice geographic accuracy and may lead to distortions that can misrepresent the true shape and relative location of regions. Therefore, cartograms are most effective when used in conjunction with traditional maps and accompanied by clear explanations of the distortion applied.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. πŸ›°️ 1. Active Remote Sensing πŸ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. πŸ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. πŸ”Ή Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Contrast Enhancement

Image enhancement is the process of improving the visual quality and interpretability of an image. The goal is not to change the physical meaning of the image data , but to make important features easier to identify for visual interpretation or automatic analysis (e.g., classification, feature extraction). In simple terms, image enhancement helps make an image clearer, sharper, and more informative for human eyes or computer algorithms. Purpose of Image Enhancement To improve visual appearance of images. To highlight specific features such as roads, rivers, vegetation, or built-up areas. To enhance contrast or brightness for better differentiation. To reduce noise or remove distortions. To prepare images for further processing like classification or edge detection. Common Image Enhancement Operations Image Reduction: Decreases the size or resolution of an image. Useful for faster processing or overview visualization. Image Mag...