Skip to main content

Projected CRS in GIS

In GIS, a Projected CRS (Coordinate Reference System) is a system used to represent locations on the Earth's surface using a two-dimensional Cartesian coordinate system. Unlike Geographic CRSs, which use latitude and longitude, Projected CRSs employ x and y coordinates on a flat plane to represent geographic locations.

Here's an overview of the key aspects of Projected CRSs:

1. Conversion from Geographic CRS: Projected CRSs are derived from Geographic CRSs through a process known as map projection. Map projections mathematically transform the curved surface of the Earth onto a flat plane, resulting in distortions in shape, distance, area, or direction. Different map projections are designed to minimize specific types of distortion, depending on the intended use of the map.

2. Planar Coordinate System: Projected CRSs use a two-dimensional Cartesian coordinate system, which consists of horizontal x and vertical y axes. The x-axis typically represents east-west coordinates, while the y-axis represents north-south coordinates. The origin (0,0) is usually located near the center of the map projection.

3. Map Projection Methods: There are various map projection methods available, each suitable for different types of geographic areas and purposes. Some commonly used map projections include the Mercator, Lambert Conformal Conic, Albers Equal Area, and Universal Transverse Mercator (UTM) projections. Each projection has specific characteristics and trade-offs, such as preserving shape, area, distance, or direction.

4. Projection Parameters: Different map projections require specific parameters to define their characteristics and behavior. These parameters include central meridian, standard parallels, false easting, false northing, scale factor, and others. These parameters help fine-tune the projection to accurately represent the desired geographic area.

5. Distance, Area, and Direction: Projected CRSs are advantageous for measurements involving distance, area, and direction on a flat surface. With a Projected CRS, you can accurately calculate distances between points, measure areas of polygons, and determine azimuths or angles between features.

6. Local vs. Global Projections: Some map projections are better suited for specific regions, such as national or local coordinate systems. Others, like the UTM projection, are designed to provide accurate representation for specific zones across the globe. These global projections divide the Earth into separate zones, each with its own projection parameters.

When working with Projected CRSs, it's essential to select an appropriate projection that minimizes distortions and suits the specific analysis or visualization requirements. GIS software provides tools to transform data between different CRSs, allowing you to project spatial data into the desired coordinate system for analysis, visualization, or data integration purposes.

Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces