Skip to main content

Projected CRS in GIS

In GIS, a Projected CRS (Coordinate Reference System) is a system used to represent locations on the Earth's surface using a two-dimensional Cartesian coordinate system. Unlike Geographic CRSs, which use latitude and longitude, Projected CRSs employ x and y coordinates on a flat plane to represent geographic locations.

Here's an overview of the key aspects of Projected CRSs:

1. Conversion from Geographic CRS: Projected CRSs are derived from Geographic CRSs through a process known as map projection. Map projections mathematically transform the curved surface of the Earth onto a flat plane, resulting in distortions in shape, distance, area, or direction. Different map projections are designed to minimize specific types of distortion, depending on the intended use of the map.

2. Planar Coordinate System: Projected CRSs use a two-dimensional Cartesian coordinate system, which consists of horizontal x and vertical y axes. The x-axis typically represents east-west coordinates, while the y-axis represents north-south coordinates. The origin (0,0) is usually located near the center of the map projection.

3. Map Projection Methods: There are various map projection methods available, each suitable for different types of geographic areas and purposes. Some commonly used map projections include the Mercator, Lambert Conformal Conic, Albers Equal Area, and Universal Transverse Mercator (UTM) projections. Each projection has specific characteristics and trade-offs, such as preserving shape, area, distance, or direction.

4. Projection Parameters: Different map projections require specific parameters to define their characteristics and behavior. These parameters include central meridian, standard parallels, false easting, false northing, scale factor, and others. These parameters help fine-tune the projection to accurately represent the desired geographic area.

5. Distance, Area, and Direction: Projected CRSs are advantageous for measurements involving distance, area, and direction on a flat surface. With a Projected CRS, you can accurately calculate distances between points, measure areas of polygons, and determine azimuths or angles between features.

6. Local vs. Global Projections: Some map projections are better suited for specific regions, such as national or local coordinate systems. Others, like the UTM projection, are designed to provide accurate representation for specific zones across the globe. These global projections divide the Earth into separate zones, each with its own projection parameters.

When working with Projected CRSs, it's essential to select an appropriate projection that minimizes distortions and suits the specific analysis or visualization requirements. GIS software provides tools to transform data between different CRSs, allowing you to project spatial data into the desired coordinate system for analysis, visualization, or data integration purposes.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...