Skip to main content

Projected CRS in GIS

In GIS, a Projected CRS (Coordinate Reference System) is a system used to represent locations on the Earth's surface using a two-dimensional Cartesian coordinate system. Unlike Geographic CRSs, which use latitude and longitude, Projected CRSs employ x and y coordinates on a flat plane to represent geographic locations.

Here's an overview of the key aspects of Projected CRSs:

1. Conversion from Geographic CRS: Projected CRSs are derived from Geographic CRSs through a process known as map projection. Map projections mathematically transform the curved surface of the Earth onto a flat plane, resulting in distortions in shape, distance, area, or direction. Different map projections are designed to minimize specific types of distortion, depending on the intended use of the map.

2. Planar Coordinate System: Projected CRSs use a two-dimensional Cartesian coordinate system, which consists of horizontal x and vertical y axes. The x-axis typically represents east-west coordinates, while the y-axis represents north-south coordinates. The origin (0,0) is usually located near the center of the map projection.

3. Map Projection Methods: There are various map projection methods available, each suitable for different types of geographic areas and purposes. Some commonly used map projections include the Mercator, Lambert Conformal Conic, Albers Equal Area, and Universal Transverse Mercator (UTM) projections. Each projection has specific characteristics and trade-offs, such as preserving shape, area, distance, or direction.

4. Projection Parameters: Different map projections require specific parameters to define their characteristics and behavior. These parameters include central meridian, standard parallels, false easting, false northing, scale factor, and others. These parameters help fine-tune the projection to accurately represent the desired geographic area.

5. Distance, Area, and Direction: Projected CRSs are advantageous for measurements involving distance, area, and direction on a flat surface. With a Projected CRS, you can accurately calculate distances between points, measure areas of polygons, and determine azimuths or angles between features.

6. Local vs. Global Projections: Some map projections are better suited for specific regions, such as national or local coordinate systems. Others, like the UTM projection, are designed to provide accurate representation for specific zones across the globe. These global projections divide the Earth into separate zones, each with its own projection parameters.

When working with Projected CRSs, it's essential to select an appropriate projection that minimizes distortions and suits the specific analysis or visualization requirements. GIS software provides tools to transform data between different CRSs, allowing you to project spatial data into the desired coordinate system for analysis, visualization, or data integration purposes.

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...

vector data analysis in GIS Surface Analysis – Interpolation – IDW

1. Surface Analysis 🗺️ This is when we try to understand and visualize how a value changes across a surface (like land). The values might be temperature, rainfall, elevation, pollution levels, etc. We often start with only some points where we know the value, but we want to guess the values everywhere in between. 2. Interpolation 📍➡️📍 Interpolation is a way of estimating unknown values between known points. Imagine you know the temperature at a few weather stations, but you want to know the temperature everywhere in between. GIS uses math to "fill in the blanks" between the points. 3. IDW (Inverse Distance Weighted) 🎯 One popular interpolation method. The idea: Points that are closer to you have more influence than points farther away. Example: If you're standing between two rain gauges, the closer one's reading will affect your estimated rainfall more than the farther one. "Inverse Distance" means: The ...