Skip to main content

Projected CRS in GIS

In GIS, a Projected CRS (Coordinate Reference System) is a system used to represent locations on the Earth's surface using a two-dimensional Cartesian coordinate system. Unlike Geographic CRSs, which use latitude and longitude, Projected CRSs employ x and y coordinates on a flat plane to represent geographic locations.

Here's an overview of the key aspects of Projected CRSs:

1. Conversion from Geographic CRS: Projected CRSs are derived from Geographic CRSs through a process known as map projection. Map projections mathematically transform the curved surface of the Earth onto a flat plane, resulting in distortions in shape, distance, area, or direction. Different map projections are designed to minimize specific types of distortion, depending on the intended use of the map.

2. Planar Coordinate System: Projected CRSs use a two-dimensional Cartesian coordinate system, which consists of horizontal x and vertical y axes. The x-axis typically represents east-west coordinates, while the y-axis represents north-south coordinates. The origin (0,0) is usually located near the center of the map projection.

3. Map Projection Methods: There are various map projection methods available, each suitable for different types of geographic areas and purposes. Some commonly used map projections include the Mercator, Lambert Conformal Conic, Albers Equal Area, and Universal Transverse Mercator (UTM) projections. Each projection has specific characteristics and trade-offs, such as preserving shape, area, distance, or direction.

4. Projection Parameters: Different map projections require specific parameters to define their characteristics and behavior. These parameters include central meridian, standard parallels, false easting, false northing, scale factor, and others. These parameters help fine-tune the projection to accurately represent the desired geographic area.

5. Distance, Area, and Direction: Projected CRSs are advantageous for measurements involving distance, area, and direction on a flat surface. With a Projected CRS, you can accurately calculate distances between points, measure areas of polygons, and determine azimuths or angles between features.

6. Local vs. Global Projections: Some map projections are better suited for specific regions, such as national or local coordinate systems. Others, like the UTM projection, are designed to provide accurate representation for specific zones across the globe. These global projections divide the Earth into separate zones, each with its own projection parameters.

When working with Projected CRSs, it's essential to select an appropriate projection that minimizes distortions and suits the specific analysis or visualization requirements. GIS software provides tools to transform data between different CRSs, allowing you to project spatial data into the desired coordinate system for analysis, visualization, or data integration purposes.

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Earthquake. Terminology and Concept

Earthquake It is a transient violent movement of the Earth's surface that follows a release of energy in the Earth's crust. 2. Magnitude It is a measure of the amount of energy released during an earthquake and expressed by Richter scale. Effect of earthquake according to Richter scale . Richter Magnitude Earthquake effects Less than 3.5 Generally not felt, but recorded. 3.5-5.4 Often felt, but rarely causes damage. Under 6.0 At most, slight damage to well-designed buildings. Can cause major damage to poorly constructed buildings over small regions. 6.1-6.9 Can be destructive in areas up to about 100 across where people live. 7.0-7.9 Major earthquake. Can cause serious damage over larger areas. 8 or greater Great Earthquake. Can cause serious damage in areas several hundred across. 3. Intensity Intensity is a qualitative measure of the actual shaking at a location during an Earthquake, and is assigned in Roman Capital Numerical. It refers to the effects of earthqu