Skip to main content

Geographic CRS (Coordinate Reference System)

In GIS, a Geographic CRS (Coordinate Reference System) is a system used to define and represent locations on the Earth's surface using latitude and longitude coordinates. It is based on the concept of a three-dimensional ellipsoidal or spherical model of the Earth.

A Geographic CRS provides a framework for accurately specifying the position of a point on the Earth's surface by assigning numerical values to latitude and longitude. Here's a brief explanation of the components and characteristics of a Geographic CRS:

1. Latitude: Latitude measures the distance north or south of the Earth's Equator. It is expressed in degrees, with values ranging from -90° at the South Pole to +90° at the North Pole. The Equator is defined as 0° latitude.

2. Longitude: Longitude measures the distance east or west of a reference meridian. The most commonly used reference meridian is the Prime Meridian, which passes through Greenwich, London, and is assigned a value of 0°. Longitude values range from -180° to +180°, with negative values representing locations west of the Prime Meridian and positive values representing locations east of it.

3. Ellipsoidal and Spherical Models: Geographic CRSs can be based on either an ellipsoidal or a spherical model of the Earth. The ellipsoidal model approximates the Earth's shape as an oblate spheroid, while the spherical model represents it as a perfect sphere. The choice of model depends on the level of accuracy required for a particular application.

4. Datum: A datum is a mathematical model that defines the size, shape, and orientation of the Earth, serving as the reference framework for a Geographic CRS. Different datums are used worldwide, such as the World Geodetic System 1984 (WGS84) and the North American Datum 1983 (NAD83). The datum defines the position of the coordinate origin (0,0) and the orientation of the coordinate axes within a Geographic CRS.

5. Angular Units: Geographic CRSs typically use angular units, such as degrees, minutes, and seconds (DMS) or decimal degrees (DD), to express latitude and longitude values.

Geographic CRSs are widely used for various applications in GIS, such as mapping, spatial analysis, and data integration. They provide a common reference system that allows spatial data from different sources to be accurately aligned and analyzed together. When working with Geographic CRSs, it's important to ensure that data is transformed or projected correctly when required to match the desired coordinate system and avoid distortions or errors.

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...