Skip to main content

CRS in GIS. Cordinate Reference System

In the context of Geographic Information Systems (GIS), CRS stands for Coordinate Reference System. A Coordinate Reference System is a framework used to define and represent locations on the Earth's surface in a consistent and standardized manner.

The Earth is a three-dimensional object, and in order to accurately represent locations on its surface, we need a system that defines how coordinates are measured and referenced. A CRS provides a set of rules, parameters, and mathematical formulas to define the coordinates of points on the Earth's surface.

There are two main types of CRSs used in GIS: Geographic CRS and Projected CRS.

1. Geographic CRS: A Geographic CRS, also known as a geodetic CRS, uses latitude and longitude to define locations on the Earth's surface. Latitude measures the distance north or south of the Equator, while longitude measures the distance east or west of a reference meridian, typically the Prime Meridian (0 degrees longitude) that passes through Greenwich, London. Geographic CRSs are based on a spherical or ellipsoidal model of the Earth, such as the World Geodetic System 1984 (WGS84) or the North American Datum 1983 (NAD83).

2. Projected CRS: A Projected CRS, also known as a Cartesian CRS, uses a two-dimensional Cartesian coordinate system to represent locations on a flat surface, such as a paper map or a computer screen. Projected CRSs are derived from Geographic CRSs by applying mathematical transformations to convert the spherical or ellipsoidal coordinates into planar (x, y) coordinates. The transformation involves processes like flattening, scaling, and distortion correction. Projected CRSs are commonly used for measuring distances, areas, and directions accurately on maps. Examples of projected CRSs include the Universal Transverse Mercator (UTM) and the Lambert Conformal Conic (LCC) systems.

CRSs are essential in GIS because they ensure that geographic data from different sources can be accurately integrated and analyzed. When working with spatial data, it is crucial to use the correct CRS to avoid distortions, errors, and inconsistencies. GIS software allows users to define and assign CRSs to their datasets, ensuring proper alignment and accurate analysis.

It's worth noting that there are many different CRSs available, each suitable for specific regions, purposes, or map projections. Choosing the appropriate CRS depends on the geographic extent of your study area, the level of accuracy required, and the intended use of the data.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

Contrast Enhancement

Image enhancement is the process of improving the visual quality and interpretability of an image. The goal is not to change the physical meaning of the image data , but to make important features easier to identify for visual interpretation or automatic analysis (e.g., classification, feature extraction). In simple terms, image enhancement helps make an image clearer, sharper, and more informative for human eyes or computer algorithms. Purpose of Image Enhancement To improve visual appearance of images. To highlight specific features such as roads, rivers, vegetation, or built-up areas. To enhance contrast or brightness for better differentiation. To reduce noise or remove distortions. To prepare images for further processing like classification or edge detection. Common Image Enhancement Operations Image Reduction: Decreases the size or resolution of an image. Useful for faster processing or overview visualization. Image Mag...