Skip to main content

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods.


Some of the factors that influence the geography of floods include:


Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides.


Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall.


Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floodplains can absorb and distribute water more effectively than smaller basins with limited storage capacity.


Land use: Human activities such as deforestation, urbanization, and agriculture can alter the landscape and increase the risk of floods. For example, deforestation can reduce the ability of forests to absorb and retain water, while urbanization can increase the amount of impervious surfaces that prevent water from infiltrating the soil.


Geology: The composition and structure of the soil and underlying rock formations can affect the infiltration and storage of water, and the stability of the land during a flood.


Sea level: Coastal regions are particularly vulnerable to flooding due to rising sea levels caused by climate change and natural factors such as storm surges.


Natural hazards: Floods can be triggered by other natural hazards such as earthquakes, landslides, and volcanic eruptions.


Understanding these geographic determinants is important for predicting and managing flood risks. It can inform the development of flood risk maps, floodplain zoning, land use planning, and other flood management strategies that aim to reduce the impacts of floods on people and the environment.

..

Types

There are several types of floods that can occur in different settings and under various circumstances. Some of the most common types of floods include:


River floods: These floods occur when the water level in a river or other watercourse exceeds its capacity and spills over onto the surrounding floodplain.


Flash floods: These floods happen quickly and can occur in areas with little or no warning. They are typically caused by heavy rainfall or sudden snowmelt and can cause significant damage in a short amount of time.


Coastal floods: These floods occur when ocean water levels rise due to storm surges, high tides, or other factors. They can cause significant damage to coastal communities and infrastructure.


Urban floods: These floods are caused by heavy rainfall or inadequate drainage in urban areas with high levels of impervious surfaces such as concrete and asphalt.


Dam or levee failures: These floods occur when a dam or levee breaks or overflows, leading to downstream flooding.


Groundwater floods: These floods occur when the groundwater level rises above the surface due to heavy rainfall or other factors.


Snowmelt floods: These floods happen when snow and ice melt rapidly, causing a sudden increase in river or stream water levels.


Understanding the different types of floods is important for developing appropriate flood management strategies and emergency response plans to mitigate their impact on people and the environment.

..

Flood Plain:

A floodplain is a flat or nearly flat area adjacent to a river or other watercourse that is subject to flooding during high water events. Floodplains can be found in both rural and urban areas and play an important role in the natural functioning of river systems.


During a flood event, water spills over from the river or watercourse and spreads out across the floodplain. Floodplains act as natural sponges, absorbing and slowing down floodwaters, reducing the speed and volume of water that flows downstream. This can help to prevent or reduce flooding in downstream areas and can also provide benefits such as groundwater recharge, nutrient cycling, and wildlife habitat.


However, human activities such as urbanization, agriculture, and channelization of rivers can increase the risk of flooding in floodplain areas. The construction of buildings and other infrastructure on floodplains can obstruct the natural flow of water, reducing the flood storage capacity of the area and increasing the risk of flooding during high water events.


To manage flood risks in floodplain areas, various flood management strategies can be employed, such as land use planning, zoning regulations, and construction of flood control measures such as levees, dams, and flood walls. These strategies aim to reduce the impact of floods on people and property while also preserving the ecological functions of the floodplain.


Floodplain management is an important component of flood risk reduction and can help to protect people and communities from the devastating impacts of floods while also preserving the ecological and social values of these important natural areas.



Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...