Skip to main content

Drought. Definitions. Causes. Types.

Drought occurs when there is less water available than what is normally expected in a particular location and season. It can last for days, months or years, and has severe impacts on ecosystems, agriculture and the economy. Droughts are becoming more severe and unpredictable due to climate change. There are three kinds of drought effects: environmental, economic and social. Environmental effects include the drying of wetlands, more and larger wildfires, and loss of biodiversity. Economic consequences include disruption of water supplies, lower agricultural outputs and higher food-production costs. Social and health costs include negative impacts on health, stress from failed harvests and water scarcity. Prolonged droughts have caused mass migrations and humanitarian crises. Some plant species have adapted to tolerate drought, but most arid ecosystems have inherently low productivity. The most prolonged drought in recorded history continues in the Atacama Desert in Chile. Humans have historically viewed droughts as disasters and have attributed them to natural or supernatural forces.

Definition

IPCC defines drought as "drier than normal conditions"
National Integrated Drought Information System defines drought as "a deficiency of precipitation over an extended period of time (usually a season or more), resulting in a water shortage"

National Weather Service office of the NOAA defines drought as "a deficiency of moisture that results in adverse impacts on people, animals, or vegetation over a sizeable area"

Drought is a complex phenomenon related to the absence of water, which is difficult to monitor and define.

Over 150 definitions of "drought" were published by the early 1980s, reflecting differences in regions, needs, and disciplinary approaches.

Types
There are three categories of drought: meteorological, hydrological, and agricultural or ecological drought.
Meteorological drought occurs due to lack of precipitation.

Hydrological drought is related to low runoff, streamflow, and reservoir storage.

Agricultural or ecological drought causes plant stress from a combination of evaporation and low soil moisture.

Socioeconomic drought occurs when the demand for an economic good exceeds supply due to a weather-related shortfall in water supply.

Meteorological drought usually precedes the other kinds of drought.

Hydrological drought tends to show up more slowly because it involves stored water that is used but not replenished.

Agricultural or ecological droughts affect crop production or ecosystems in general.

Agricultural drought can be caused by increased irrigation or poorly planned agricultural endeavors leading to soil conditions and erosion.
.

Causes

Precipitation mechanisms include convective, stratiform, and orographic rainfall, and precipitation can be categorized into three types.

Droughts mainly occur in areas with already low rainfall levels and can be triggered by high levels of reflected sunlight, continental winds, and high pressure systems.

The dry season in the tropics increases the occurrence of droughts, and bushfires are common due to the lack of water in the plants.

El Niño and La Niña events can exacerbate drought conditions in various regions around the world.

Climate change is expected to cause droughts with a significant impact on agriculture, increase the frequency of extreme events, and worsen compound warm-season droughts in Europe. 



Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...