Skip to main content

Coordinate System. Geographic. Cartesian or Rectangular Coordinate System

Coordinates and coordinate systems are mathematical tools used to locate points in space.


Coordinates are the numbers or values used to specify the position of a point in space. They can be represented as a set of values or an ordered pair or triple, depending on the number of dimensions being considered. In two-dimensional space, for example, a point can be located using two coordinates: the x-coordinate, which represents the horizontal position of the point, and the y-coordinate, which represents the vertical position of the point. In three-dimensional space, a point can be located using three coordinates: the x-coordinate, y-coordinate, and z-coordinate.


A coordinate system is a framework used to assign coordinates to points in space. It consists of a reference point, called the origin, and a set of axes that define the directions in which coordinates can be measured. The axes are usually perpendicular to each other and represent the dimensions of space being considered. For example, in a two-dimensional Cartesian coordinate system, the x-axis represents the horizontal dimension, and the y-axis represents the vertical dimension. The origin is the point where the two axes intersect.


There are several types of coordinate systems, each with its own unique characteristics and applications. Some commonly used coordinate systems include:


Cartesian coordinate system: Also known as rectangular coordinate system, it is a two-dimensional system that uses two perpendicular lines, known as the x-axis and y-axis, to locate points on a plane. The origin is the point where the two axes intersect.


Polar coordinate system: It is a two-dimensional system that uses an angle and a radius to locate points. The angle is measured in degrees or radians, and the radius is the distance from the origin.


Cylindrical coordinate system: It is a three-dimensional system that uses a radius, an angle, and a height to locate points. The radius and angle are similar to those used in the polar coordinate system, and the height is measured along the z-axis.


Spherical coordinate system: It is a three-dimensional system that uses a radius, an angle, and an elevation to locate points. The radius is the distance from the origin, the angle is the same as the one used in the polar coordinate system, and the elevation is the angle between the point and the xy-plane.


Coordinate systems are used in many fields, such as mathematics, physics, engineering, geography, and computer graphics, to describe and analyze the positions and movements of objects in space.

..

Geographical Coordinate System (GCS)


Geographical Coordinate System (GCS) is a system that is used to locate points on the Earth's surface. It uses a set of angular measurements to describe the position of a point in terms of its latitude, longitude, and sometimes altitude.


Latitude is the angular distance measured in degrees north or south of the Equator, which is the imaginary line that circles the Earth at 0 degrees latitude. Longitude, on the other hand, is the angular distance measured in degrees east or west of the Prime Meridian, which is the imaginary line that circles the Earth at 0 degrees longitude.


By using latitude and longitude, one can determine the precise location of a point on the Earth's surface. The altitude or elevation can also be added to these measurements to describe the point in three dimensions.


Geographical Coordinate System is used in many applications such as mapping, navigation, and geographic information systems (GIS). It is also used for geocaching, surveying, and tracking the movement of natural resources, weather systems, and wildlife.


It is important to note that there are several different GCSs that exist, each with its own set of reference points and measurements. The most commonly used GCS is the World Geodetic System 1984 (WGS84), which is used by many GPS devices and mapping software.

..


Types:



There are two main types of Geographical Coordinate Systems (GCS): Geographic Coordinate Systems (GCS) and Projected Coordinate Systems (PCS).


Geographic Coordinate Systems (GCS): A GCS is a three-dimensional reference system that uses latitude and longitude to locate positions on the Earth's surface. It is based on a spheroid or an ellipsoid that approximates the shape of the Earth. The most commonly used GCS is the World Geodetic System 1984 (WGS84), which is used by many GPS devices and mapping software. Other examples of GCS include North American Datum 1983 (NAD83) and European Datum 1950 (ED50).


Projected Coordinate Systems (PCS): A PCS is a two-dimensional reference system that is used to locate positions on a flat surface, such as a map or a computer screen. It uses a Cartesian coordinate system with x and y coordinates that measure distance in meters or feet. PCSs are created by projecting the three-dimensional GCS onto a flat surface. There are many different types of PCSs, each with its own projection method, such as Mercator, Lambert Conformal Conic, and Universal Transverse Mercator (UTM).


In summary, GCSs use latitude and longitude to locate positions on the Earth's surface, while PCSs use a two-dimensional Cartesian coordinate system to locate positions on a flat surface. Both GCSs and PCSs are important tools for mapping, navigation, and geographic information systems (GIS).

..


Rectangular coordinate system, also known as the Cartesian coordinate system, is a mathematical concept used to represent points in a two-dimensional plane using a set of coordinates. The system was invented by French mathematician and philosopher, René Descartes, in the 17th century, and it revolutionized the way geometry and algebra were studied and taught.


The rectangular coordinate system consists of two perpendicular lines, the x-axis and the y-axis, which intersect at a point called the origin. The x-axis is the horizontal line and the y-axis is the vertical line. The coordinates of a point in this system are represented as an ordered pair (x, y), where x is the distance of the point from the y-axis and y is the distance of the point from the x-axis.


The position of a point in the rectangular coordinate system can be found by locating the intersection of the horizontal and vertical lines that correspond to the x and y coordinates of the point. For example, the point (2,3) can be located by moving two units to the right from the origin along the x-axis, and then moving three units up along the y-axis.


The rectangular coordinate system is a powerful tool that is widely used in mathematics, physics, engineering, and other sciences. It allows for the representation of complex relationships between variables and enables the graphing of functions and data, making it an essential tool for data analysis, visualization, and modeling.





Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...