Skip to main content

Distribution and production of Wheat.

Top wheat producers in 2020 Country Millions of tonnes China 134.2 India 107.6 Russia 85.9 United States 49.7 Canada 35.2 France 30.1 Pakistan 25.2 Ukraine 24.9 Germany 22.2 Turkey 20.5 Wheat is widely cultivated cereal, spread from 57ºN to 47ºS latitude. Hence, wheat is cultivated and harvested throughout the year in one country or other. China, India, Russian federation, USA, France, Canada, Germany, Pakistan, Australia and Turkey are most important wheat growing countries. ECONOMIC IMPORTANCE Wheat is the world's number one cereal in area. Cultivation of wheat is as old as civilization. It is the first mentioned crop in Bible. Wheat is eaten in various forms by more than 1000 million people in the world. In India, it is second important staple food crop next to rice. In areas wheat is staple cereal food; it is eaten in the form of 'chapattis'. In areas where rice is the staple cereal food, wheat is eaten in the form of 'puris' or in the form of 'upma' (cooked from 'suji' or 'rawa'). In addition to this, wheat is also consumed in various other preparations such as 'dalia', 'halwa', 'sweet meals', etc. In most of the urban areas of the country, the use of backed leavened bread, flakes, cakes, biscuits, etc. is increasing at a fast rate. Besides staple food to human, wheat straw is a good source of feed for a large population of cattle in the country. SOIL AND CLIMATIC REQUIREMENT Soils with a clay loam or loam texture, good structure and moderate water holding capacity are ideal for wheat cultivation. Care should be taken to avoid very porous and excessively drained soils. Soil should be neutral in its reaction. Heavy soils with good drainage are suitable for wheat cultivation under dry conditions. These soils absorb and retain in rain water well. Heavy soils with poor structure and poor drainage are not suitable as wheat is sensible to water logging. Wheat can be successfully grown on lighter soils provided their water and nutrient holding capacities are improved. Climate Wheat has hardening ability after germination. It can germinate at temperature just above 4ºC. After germination it can withstand freezing temperatures by as low as -9.4ºC (Spring wheat) and as low as -31.6ºC (Winter wheat). Normal process starts above 5ºC under the presence of adequate sunlight. Wheat can be exposed to low temperature during vegetative and high temperature and long days during reproductive phases. Optimum temperature is 20-22ºC. Optimum temperature for vegetative stage is 16-22ºC. Temperature above 22ºC decreases the plant height, root length and tiller number. Heading is accelerated as temperature rose from 22 to 34ºC, but, retarded above 34ºC. At grain development stage, temperature of 25ºC for 4-5 weeks is optimum and above 25ºC reduces the grain weight. It is long day plant. Long day hastens the flowering and short day increase the vegetative period. But, after the release of photo-insensitive varieties, no issues of photo-sensitiveness.


Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...