Skip to main content

Distribution and production of Wheat.

Top wheat producers in 2020 Country Millions of tonnes China 134.2 India 107.6 Russia 85.9 United States 49.7 Canada 35.2 France 30.1 Pakistan 25.2 Ukraine 24.9 Germany 22.2 Turkey 20.5 Wheat is widely cultivated cereal, spread from 57ΒΊN to 47ΒΊS latitude. Hence, wheat is cultivated and harvested throughout the year in one country or other. China, India, Russian federation, USA, France, Canada, Germany, Pakistan, Australia and Turkey are most important wheat growing countries. ECONOMIC IMPORTANCE Wheat is the world's number one cereal in area. Cultivation of wheat is as old as civilization. It is the first mentioned crop in Bible. Wheat is eaten in various forms by more than 1000 million people in the world. In India, it is second important staple food crop next to rice. In areas wheat is staple cereal food; it is eaten in the form of 'chapattis'. In areas where rice is the staple cereal food, wheat is eaten in the form of 'puris' or in the form of 'upma' (cooked from 'suji' or 'rawa'). In addition to this, wheat is also consumed in various other preparations such as 'dalia', 'halwa', 'sweet meals', etc. In most of the urban areas of the country, the use of backed leavened bread, flakes, cakes, biscuits, etc. is increasing at a fast rate. Besides staple food to human, wheat straw is a good source of feed for a large population of cattle in the country. SOIL AND CLIMATIC REQUIREMENT Soils with a clay loam or loam texture, good structure and moderate water holding capacity are ideal for wheat cultivation. Care should be taken to avoid very porous and excessively drained soils. Soil should be neutral in its reaction. Heavy soils with good drainage are suitable for wheat cultivation under dry conditions. These soils absorb and retain in rain water well. Heavy soils with poor structure and poor drainage are not suitable as wheat is sensible to water logging. Wheat can be successfully grown on lighter soils provided their water and nutrient holding capacities are improved. Climate Wheat has hardening ability after germination. It can germinate at temperature just above 4ΒΊC. After germination it can withstand freezing temperatures by as low as -9.4ΒΊC (Spring wheat) and as low as -31.6ΒΊC (Winter wheat). Normal process starts above 5ΒΊC under the presence of adequate sunlight. Wheat can be exposed to low temperature during vegetative and high temperature and long days during reproductive phases. Optimum temperature is 20-22ΒΊC. Optimum temperature for vegetative stage is 16-22ΒΊC. Temperature above 22ΒΊC decreases the plant height, root length and tiller number. Heading is accelerated as temperature rose from 22 to 34ΒΊC, but, retarded above 34ΒΊC. At grain development stage, temperature of 25ΒΊC for 4-5 weeks is optimum and above 25ΒΊC reduces the grain weight. It is long day plant. Long day hastens the flowering and short day increase the vegetative period. But, after the release of photo-insensitive varieties, no issues of photo-sensitiveness.


Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...