Skip to main content

Distribution and production of Wheat.

Top wheat producers in 2020 Country Millions of tonnes China 134.2 India 107.6 Russia 85.9 United States 49.7 Canada 35.2 France 30.1 Pakistan 25.2 Ukraine 24.9 Germany 22.2 Turkey 20.5 Wheat is widely cultivated cereal, spread from 57ºN to 47ºS latitude. Hence, wheat is cultivated and harvested throughout the year in one country or other. China, India, Russian federation, USA, France, Canada, Germany, Pakistan, Australia and Turkey are most important wheat growing countries. ECONOMIC IMPORTANCE Wheat is the world's number one cereal in area. Cultivation of wheat is as old as civilization. It is the first mentioned crop in Bible. Wheat is eaten in various forms by more than 1000 million people in the world. In India, it is second important staple food crop next to rice. In areas wheat is staple cereal food; it is eaten in the form of 'chapattis'. In areas where rice is the staple cereal food, wheat is eaten in the form of 'puris' or in the form of 'upma' (cooked from 'suji' or 'rawa'). In addition to this, wheat is also consumed in various other preparations such as 'dalia', 'halwa', 'sweet meals', etc. In most of the urban areas of the country, the use of backed leavened bread, flakes, cakes, biscuits, etc. is increasing at a fast rate. Besides staple food to human, wheat straw is a good source of feed for a large population of cattle in the country. SOIL AND CLIMATIC REQUIREMENT Soils with a clay loam or loam texture, good structure and moderate water holding capacity are ideal for wheat cultivation. Care should be taken to avoid very porous and excessively drained soils. Soil should be neutral in its reaction. Heavy soils with good drainage are suitable for wheat cultivation under dry conditions. These soils absorb and retain in rain water well. Heavy soils with poor structure and poor drainage are not suitable as wheat is sensible to water logging. Wheat can be successfully grown on lighter soils provided their water and nutrient holding capacities are improved. Climate Wheat has hardening ability after germination. It can germinate at temperature just above 4ºC. After germination it can withstand freezing temperatures by as low as -9.4ºC (Spring wheat) and as low as -31.6ºC (Winter wheat). Normal process starts above 5ºC under the presence of adequate sunlight. Wheat can be exposed to low temperature during vegetative and high temperature and long days during reproductive phases. Optimum temperature is 20-22ºC. Optimum temperature for vegetative stage is 16-22ºC. Temperature above 22ºC decreases the plant height, root length and tiller number. Heading is accelerated as temperature rose from 22 to 34ºC, but, retarded above 34ºC. At grain development stage, temperature of 25ºC for 4-5 weeks is optimum and above 25ºC reduces the grain weight. It is long day plant. Long day hastens the flowering and short day increase the vegetative period. But, after the release of photo-insensitive varieties, no issues of photo-sensitiveness.


Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...