Skip to main content

Radar image. Polarization in Remote Sensing

L band radars operate on a wavelength of 15-30 cm and a frequency of 1-2 GHz. L band radars are mostly used for clear air turbulence studies. S band radars operate on a wavelength of 8-15 cm and a frequency of 2-4 GHz. Because of the wavelength and frequency, S band radars are not easily attenuated.

.

Polarization refers to the direction of travel of an electromagnetic wave vector's tip:

vertical (up and down),

horizontal (left to right), or 

circular (rotating in a constant plane left or right).

.

a synthetic aperture radar (SAR) for high-resolution imaging.


a radar altimeter, to measure the ocean topography.

echo amplitude


a wind scatterometer to measure wind speed and direction.


Other types of radars have been flown for Earth observation missions: precipitation radars such as the 

Tropical Rainfall Measuring Mission,

or

cloud radars like the one used on Cloudsat.

.

RISAT-1 (SAR, ISRO India, 2012)

RORSAT (SAR, Soviet Union, 1967-1988)

Seasat (SAR, altimeter, scatterometer, US, 1978)

.

ERS-1 & ERS-2 (European Remote-Sensing Satellite) (altimeter, combined SAR/scatterometer)

.

TOPEX/Poseidon (altimeter)

.

Tropical Rainfall Measuring Mission (Precipitation Radar)


Cloudsat (cloud radar)


Metop (scatterometer)


QuickScat (scatterometer)




Polarization in radar imaging refers to the orientation of the electric field of the radar waves that are used to illuminate the target. There are two main types of polarization: linear and circular. Linear polarization has the electric field oscillating in one plane, while circular polarization has the electric field oscillating in a circular pattern. The type of polarization used can affect the radar image, as different types of targets will reflect the radar waves differently based on the polarization. For example, linear polarization is better for detecting targets with smooth surfaces, while circular polarization is better for detecting targets with rougher surfaces. Additionally, using different types of polarization can help to reduce the effects of interference from other sources.


HH, HV, and VV are types of polarization that are used in radar imaging.


HH stands for horizontally polarized transmitted signal and horizontally polarized received signal. This type of polarization is useful for detecting targets with smooth surfaces, as the horizontally polarized radar waves will be reflected more efficiently by these types of targets.


HV stands for horizontally polarized transmitted signal and vertically polarized received signal. This type of polarization is useful for detecting targets with rougher surfaces, as the horizontally polarized radar waves will be scattered in many directions by these types of targets, resulting in a stronger return signal.


VV stands for vertically polarized transmitted signal and vertically polarized received signal. This type of polarization is useful for detecting targets with rougher surfaces, as the vertically polarized radar waves will be scattered in many directions by these types of targets, resulting in a stronger return signal.


Using these different types of polarization can help to enhance the contrast and details in radar images, and also it can be used to extract information about the targets, such as their shape, size, and surface roughness.


Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...