Skip to main content

EMR spectrum. Electromagnetic Spectrum

Electromagnetic spectrum ranges from the shorter wavelengths (including gamma and x-rays) to the longer wavelengths (including microwaves and broadcast radio waves). There are several regions of the electromagnetic spectrum which are useful for remote sensing.


 

For most purposes, the ultraviolet or UV portion of the spectrum has the shortest wavelengths which are practical for remote sensing. This radiation is just beyond the violet portion of the visible wavelengths, hence its name. Some Earth surface materials, primarily rocks and minerals, fluoresce or emit visible light when illuminated by UV radiation.



 

The light which our eyes - our "remote sensors" - can detect is part of the visible spectrum. It is important to recognize how small the visible portion is relative to the rest of the spectrum. There is a lot of radiation around us which is "invisible" to our eyes, but can be detected by other remote sensing instruments and used to our advantage. The visible wavelengths cover a range from approximately 0.4 to 0.7 µm. The longest visible wavelength is red and the shortest is violet. Common wavelengths of what we perceive as particular colours from the visible portion of the spectrum are listed below. It is important to note that this is the only portion of the spectrum we can associate with the concept of colours.



 

Colours: Wavelength


Violet: 0.4 - 0.446 µm

Blue: 0.446 - 0.500 µm

Green: 0.500 - 0.578 µm

Yellow: 0.578 - 0.592 µm

Orange: 0.592 - 0.620 µm

Red: 0.620 - 0.7 µm


Blue, green, and red are the primary colours or wavelengths of the visible spectrum. They are defined as such because no single primary colour can be created from the other two, but all other colours can be formed by combining blue, green, and red in various proportions. Although we see sunlight as a uniform or homogeneous colour, it is actually composed of various wavelengths of radiation in primarily the ultraviolet, visible and infrared portions of the spectrum. The visible portion of this radiation can be shown in its component colours when sunlight is passed through a prism, which bends the light in differing amounts according to wavelength.


 

 

The next portion of the spectrum of interest is the infrared (IR) region which covers the wavelength range from approximately 0.7 µm to 100 µm - more than 100 times as wide as the visible portion! The infrared region can be divided into two categories based on their radiation properties - the reflected IR, and the emitted or thermal IR. Radiation in the reflected IR region is used for remote sensing purposes in ways very similar to radiation in the visible portion. The reflected IR covers wavelengths from approximately 0.7 µm to 3.0 µm. The thermal IR region is quite different than the visible and reflected IR portions, as this energy is essentially the radiation that is emitted from the Earth's surface in the form of heat. The thermal IR covers wavelengths from approximately 3.0 µm to 100 µm.



 

The portion of the spectrum of more recent interest to remote sensing is the microwave region from about 1 mm to 1 m. This covers the longest wavelengths used for remote sensing. The shorter wavelengths have properties similar to the thermal infrared region while the longer wavelengths approach the wavelengths used for radio broadcasts. Because of the special nature of this region and its importance to remote sensing in Canada, an entire chapter (Chapter 3) of the tutorial is dedicated to microwave sensing. 


Comments

Popular posts from this blog

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Hazard Mapping Spatial Planning Evacuation Planning GIS

Geographic Information Systems (GIS) play a pivotal role in disaster management by providing the tools and frameworks necessary for effective hazard mapping, spatial planning, and evacuation planning. These concepts are integral for understanding disaster risks, preparing for potential hazards, and ensuring that resources are efficiently allocated during and after a disaster. 1. Hazard Mapping: Concept: Hazard mapping involves the process of identifying, assessing, and visually representing the geographical areas that are at risk of certain natural or human-made hazards. Hazard maps display the probability, intensity, and potential impact of specific hazards (e.g., floods, earthquakes, hurricanes, landslides) within a given area. Terminologies: Hazard Zone: An area identified as being vulnerable to a particular hazard (e.g., flood zones, seismic zones). Hazard Risk: The likelihood of a disaster occurring in a specific location, influenced by factors like geography, climate, an...

Scope of Disaster Management

Disaster management refers to the systematic approach to managing and mitigating the impacts of disasters, encompassing both natural hazards (e.g., earthquakes, floods, hurricanes) and man-made disasters (e.g., industrial accidents, terrorism, nuclear accidents). Its primary objectives are to minimize potential losses, provide timely assistance to those affected, and facilitate swift and effective recovery. The scope of disaster management is multifaceted, encompassing a series of interconnected activities: preparedness, response, recovery, and mitigation. These activities must be strategically implemented before, during, and after a disaster. Key Concepts, Terminologies, and Examples 1. Awareness: Concept: Fostering public understanding of potential hazards and appropriate responses before, during, and after disasters. This involves disseminating information about risks, safety measures, and recommended actions. Terminologies: Hazard Awareness: Recognizing the types of natural...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Role of Geography in Disaster Management

Geography plays a pivotal role in disaster management by facilitating an understanding of the impact of natural disasters, guiding preparedness efforts, and supporting effective response and recovery. By analyzing geographical features, environmental conditions, and historical data, geography empowers disaster management professionals to identify risks, plan for hazards, respond to emergencies, assess damage, and monitor recovery. Geographic Information Systems (GIS) serve as crucial tools, providing critical spatial data for informed decision-making throughout the disaster management cycle. Key Concepts, Terminologies, and Examples 1. Identifying Risk: Concept: Risk identification involves analyzing geographical areas to understand their susceptibility to specific natural disasters. By studying historical events, topography, climate patterns, and environmental factors, disaster management experts can predict which regions are most vulnerable. Terminologies: Hazard Risk: The pr...