Skip to main content

Convolution in remote sensing

Convolution is a mathematical operation used in remote sensing to combine two functions, typically a signal and a kernel, in order to extract specific features from the data. It is based on the principle of convolution, which states that the output of the operation is the integral of the product of the two functions over a specified interval.


In remote sensing, convolution is often used to apply a spatial filter to an image in order to highlight specific features or patterns. This is typically done by defining a kernel, which is a small matrix of weights that is applied to the image in a sliding window fashion. The kernel is then convolved with the image, resulting in a new image that has been filtered to emphasize specific features.


Convolution is an important tool in remote sensing for a number of reasons. It can be used to enhance image contrast and improve the visual appearance of the data. It can also be used to extract specific features from the data, such as edges or textures, which can be useful for image interpretation and classification.


Convolution is a mathematical operation used in remote sensing to analyze the spatial and spectral characteristics of a target. It is based on the concept of convolving a signal with a function, which produces a new signal that contains information about the original signal and the function used for convolution.


In remote sensing, convolution is typically used to filter or process data in order to extract specific features or patterns. For example, a convolution filter may be used to highlight sharp edges or boundaries in an image, or to enhance the contrast of a spectral signature.


The convolution operation is performed by multiplying each pixel in the original data by a corresponding value in the convolution function, and then summing the results. This produces a new image that contains information about the original data and the convolution function.


Convolution is an important tool in remote sensing for a number of reasons. It can be used to improve image interpretation and classification by highlighting specific features or patterns in the data. It can also be used to reduce noise or improve the spatial and spectral resolution of an image.


Overall, convolution is a valuable tool in remote sensing for analyzing and processing data in order to extract valuable information about a target.







Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Purvanchal Hills

The Purvanchal Hills are an eastern extension of the Himalayan system , bending southward from Arunachal Pradesh along the Indo-Myanmar border. They include a series of discontinuous hill ranges such as the Patkai Bum, Naga Hills, Manipur Hills, Mizo (Lushai) Hills, Barail Range, and the Meghalaya Plateau (Khasi, Jaintia, and Garo Hills) . They are geologically young fold mountains (Tertiary period) made of sedimentary rocks (sandstone, shale, siltstone) . Their structure is the result of the collision of the Indian and Eurasian Plates , which uplifted the Himalayan orogeny . Unlike the snow-clad Greater Himalayas, these hills are moderate in elevation (600–3000 m) , with dense forests, heavy rainfall, and humid climate . 1. Barail Range Location: Separates the Brahmaputra Valley (north) and Barak Valley (south) in Assam. Geomorphology: Tertiary folded ranges with elongated ridges and valleys. Drainage: Acts as a watershed between the Barak River and the Brahma...