Skip to main content

Weather and Climate.

Good morning.
Good day.
This is Vineesh.
Welcome to our our class.

Today's topic of discussion is about Weather and Climate, a simple and interesting topic. 
We all know that Geography is Spatial science deals with Man, earth and environment. Now a days we people are studying about Different spatial process and patterns.

Weather.

Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloudy. On Earth, most weather phenomena occur in the lowest layer of the planet's atmosphere, the troposphere, just below the stratosphere. 

Weather is the mix of events that happen each day in our atmosphere. Weather is different in different parts of the world and changes over minutes, hours, days and weeks. Most weather happens in the troposphere, the part of Earth's atmosphere that is closest to the ground.

Weather refers to day-to-day temperature and precipitation activity, whereas climate is the term for the averaging of atmospheric conditions over longer periods of time. CLIMATE: the weather conditions prevailing in an area in general or over a long period.

Types of weather include sunny, cloudy, rainy, windy, and snowy.

Climate.

Climate is the average weather in a given area over a longer period of time. A description of a climate includes information on, e.g. the average temperature in different seasons, rainfall, and sunshine. Also a description of the (chance of) extremes is often included.

Climate is the long-term pattern of weather in a particular area. Weather can change from hour-to-hour, day-to-day, month-to-month or even year-to-year. A region's weather patterns, usually tracked for at least 30 years, are considered its climate.

Climate is the average of that weather. For example, you can expect snow in the Northeast in January or for it to be hot and humid in the Southeast in July. This is climate. The climate record also includes extreme values such as record high temperatures or record amounts of rainfall.

Let's conclude today's session,
Whereas weather refers to short-term changes in the atmosphere, climate describes what the weather is like over a long period of time in a specific area. Different regions can have different climates.

Thanks for attending the class,
Come with your feedback and questions.

Warranty,
Vineesh V,
Assistant Professor of Geography, Government College Chittur, Palakkad.

Comments

Popular posts from this blog

Role of Geography in Disaster Management

Geography plays a pivotal role in disaster management by facilitating an understanding of the impact of natural disasters, guiding preparedness efforts, and supporting effective response and recovery. By analyzing geographical features, environmental conditions, and historical data, geography empowers disaster management professionals to identify risks, plan for hazards, respond to emergencies, assess damage, and monitor recovery. Geographic Information Systems (GIS) serve as crucial tools, providing critical spatial data for informed decision-making throughout the disaster management cycle. Key Concepts, Terminologies, and Examples 1. Identifying Risk: Concept: Risk identification involves analyzing geographical areas to understand their susceptibility to specific natural disasters. By studying historical events, topography, climate patterns, and environmental factors, disaster management experts can predict which regions are most vulnerable. Terminologies: Hazard Risk: The pr...

Scope of Disaster Management

Disaster management refers to the systematic approach to managing and mitigating the impacts of disasters, encompassing both natural hazards (e.g., earthquakes, floods, hurricanes) and man-made disasters (e.g., industrial accidents, terrorism, nuclear accidents). Its primary objectives are to minimize potential losses, provide timely assistance to those affected, and facilitate swift and effective recovery. The scope of disaster management is multifaceted, encompassing a series of interconnected activities: preparedness, response, recovery, and mitigation. These activities must be strategically implemented before, during, and after a disaster. Key Concepts, Terminologies, and Examples 1. Awareness: Concept: Fostering public understanding of potential hazards and appropriate responses before, during, and after disasters. This involves disseminating information about risks, safety measures, and recommended actions. Terminologies: Hazard Awareness: Recognizing the types of natural...

GIS data continuous discrete ordinal interval ratio

In Geographic Information Systems (GIS) , data is categorized based on its nature (discrete or continuous) and its measurement scale (nominal, ordinal, interval, or ratio). These distinctions influence how the data is collected, analyzed, and visualized. Let's break down these categories with concepts, terminologies, and examples: 1. Discrete Data Discrete data is obtained by counting distinct items or entities. Values are finite and cannot be infinitely subdivided. Characteristics : Represent distinct objects or occurrences. Commonly represented as vector data (points, lines, polygons). Values within a range are whole numbers or categories. Examples : Number of People : Counting individuals on a train or in a hospital. Building Types : Categorizing buildings as residential, commercial, or industrial. Tree Count : Number of trees in a specific area. 2. Continuous Data Continuous data is obtained by measuring phenomena that can take any value within a range...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...

Disaster Management policy and institutions in India

India's disaster management framework is anchored by two key components: the Disaster Management Act, 2005 and the National Disaster Management Policy . Together, they aim to build a robust system for disaster preparedness, mitigation, response, and recovery. Below is a detailed breakdown of each. Disaster Management Act, 2005 The Disaster Management Act, 2005 was a landmark legislation that institutionalized disaster management across various government levels in India, creating a structured approach and legal basis for disaster risk reduction. Key aspects include: 1. Terminologies and Definitions Disaster : A catastrophic event—natural or human-made—leading to widespread loss and disruption, affecting a large population. Disaster Management : Comprehensive planning, preparedness, response, recovery, and mitigation activities aimed at reducing disaster risk and enhancing resilience. Mitigation : Actions taken to minimize the adverse effects of disasters, often by reducing exposu...