Skip to main content

Weather and Climate.

Good morning.
Good day.
This is Vineesh.
Welcome to our our class.

Today's topic of discussion is about Weather and Climate, a simple and interesting topic. 
We all know that Geography is Spatial science deals with Man, earth and environment. Now a days we people are studying about Different spatial process and patterns.

Weather.

Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloudy. On Earth, most weather phenomena occur in the lowest layer of the planet's atmosphere, the troposphere, just below the stratosphere. 

Weather is the mix of events that happen each day in our atmosphere. Weather is different in different parts of the world and changes over minutes, hours, days and weeks. Most weather happens in the troposphere, the part of Earth's atmosphere that is closest to the ground.

Weather refers to day-to-day temperature and precipitation activity, whereas climate is the term for the averaging of atmospheric conditions over longer periods of time. CLIMATE: the weather conditions prevailing in an area in general or over a long period.

Types of weather include sunny, cloudy, rainy, windy, and snowy.

Climate.

Climate is the average weather in a given area over a longer period of time. A description of a climate includes information on, e.g. the average temperature in different seasons, rainfall, and sunshine. Also a description of the (chance of) extremes is often included.

Climate is the long-term pattern of weather in a particular area. Weather can change from hour-to-hour, day-to-day, month-to-month or even year-to-year. A region's weather patterns, usually tracked for at least 30 years, are considered its climate.

Climate is the average of that weather. For example, you can expect snow in the Northeast in January or for it to be hot and humid in the Southeast in July. This is climate. The climate record also includes extreme values such as record high temperatures or record amounts of rainfall.

Let's conclude today's session,
Whereas weather refers to short-term changes in the atmosphere, climate describes what the weather is like over a long period of time in a specific area. Different regions can have different climates.

Thanks for attending the class,
Come with your feedback and questions.

Warranty,
Vineesh V,
Assistant Professor of Geography, Government College Chittur, Palakkad.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...