Skip to main content

PhD fellow in Earth Observation of terrestrial ecosystem stability to climate extremes Københavns Universitet - University of Copenhagen



PhD fellow in Earth Observation of terrestrial ecosystem stability to climate extremes Københavns Universitet - University of Copenhagen


The Department of geosciences and natural resource management is offering a PhD scholarship in Earth Observation and ecosystem science, with a focus on studying large-scale vegetation die-offs using high to very high-resolution satellite imagery.

'Living well, within the limits of our planet' is the overarching goal of the United Nations Sustainable Developments Goals. Underneath this initiative lie vital concerns related to ongoing non-sustainable changes in the global Earth System and their implications for our society. Climate extremes have been responsible for large-scale shifts in ecosystem functioning, biodiversity loss and loss in ecosystem services, and projections show that extreme events will increase in the near future. Despite the significance of such environmental pressures, major gaps remains regarding our understanding of the resilience of global terrestrial ecosystems to climate change and extremes events.

The PhD position is part of the newly funded 'DRYTIP' project (5 years), financed by the VILLUM FONDEN and lead by Associate Professor Stéphanie Horion. The project aims at advancing fundamental and technical knowledge related to drought-induced vegetation die-offs by coupling insights from Earth observation (EO), Dynamic Vegetation Model and Field ecology.

The role of the PhD student will be (1) to investigate a global set of drought-induced vegetation die-offs combing field data with climate and EO proxies; and (2) to develop advanced EO based methods to monitor vegetation die-offs and quantify ecosystem stability to climate extremes (i.e. ecosystem response to disturbance and recovery potential). The project includes fieldwork to key case studies and international research stay.

Principal supervisor is associate professor Stephanie Horion, Department of Geoscience and Natural Resource Management, smh@ign.ku.dk. Co-supervisor is professor Claus Beier, Head of Department of Geoscience and Natural Resource Management, cb@ign.ku.dk.

The position is open from 1 August 2021 or as soon as possible thereafter.

Job description
The position is available for a 3-year period and your key tasks as a PhD student at SCIENCE are:

To manage and carry out your research project
Attend PhD courses
Write scientific articles and your PhD thesis
Teach and disseminate your research
To stay at an external research institution for a few months, preferably abroad
Work for the department and take part in IGNs PhD-community
Formal requirements
Applicants should hold an MSc degree in Geography, Geoinformatics, Environmental Sciences, or related. We are seeking a highly motivated and ambitious individual with good interpersonal and communication skills. Fluency in spoken and written English is a requirement. As criteria for the assessment, emphasis will also be laid on previous publications (if any), relevant experience in remote sensing and ecology, as well as on programming skills (e.g. r, python). Fieldwork experience and experience with dense time series of remote sensing and climate data are an advantage.

Work environment
Your work place will be the Department of Geosciences and Natural Resource Management (IGN), which conducts research and education on the past, present and future physical, chemical and biological environments of the Earth and their interactions with societal and human systems to provide graduates and research in support of sustainable future solutions for society. The department has strong experience in interdisciplinary collaboration within and beyond the department. 

Further information on the Department can be found at https://ign.ku.dk/english/.

Terms of employment
The position is covered by the Memorandum on Job Structure for Academic Staff.

Terms of appointment and payment accord to the agreement between the Ministry of Finance and The Danish Confederation of Professional Associations on Academics in the State.

The starting salary is currently at a minimum DKK 330,817 (approx. €44,108) including annual supplement (+ pension at a minimum DKK 53,811). Negotiation for salary supplement is possible.

Application Procedure
The application, in English, must be submitted electronically by clicking APPLY NOW below.

Please include

A cover letter (1 page) describing your background, personal qualities, research interest and motivation for applying for this position
CV (max 2 pages)
Diploma and transcripts of records (BSc and MSc)
Other information for consideration, e.g. list of publications (if any)
A short abstract of the MSc Thesis (max. 300 words)
1-3 reference letters (if any)
The University wishes our staff to reflect the diversity of society and thus welcomes applications from all qualified candidates regardless of personal background.

The deadline for applications is 15 April 2021, 23:59 GMT +2.

Procedure and Shortlisting
After the expiry of the deadline for applications, the authorized recruitment manager selects applicants for assessment on the advice of the Interview Committee. Afterwards an assessment committee will be appointed to evaluate the selected applications. The applicants will be notified of the composition of the committee and the final selection of a successful candidate will be made by the Head of Department, based on the recommendations of the assessment committee and the interview committee.

The main criterion for selection will be the research potential of the applicant and the above mentioned skills. The successful candidate will then be requested to formally apply for enrolment as a PhD student at the PhD school of Science. You can read more about the recruitment process at https://employment.ku.dk/faculty/recruitment-process/.

Inquiries about the position can be made to Associate Professor Stephanie Horion (smh@ign.ku.dk).

General information about PhD programmes at SCIENCE is available at https://www.science.ku.dk/phd.




Vineesh V
Assistant Professor of Geography,
Government College Chittur, Palakkad
Government of Kerala.
https://vineesh-geography.business.site

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....

GIS: Real World and Representations - Modeling and Maps

Geographic Information Systems (GIS) serve as a bridge between the real world and digital representations of geographic phenomena. These representations allow users to store, analyze, and visualize spatial data for informed decision-making. Two key aspects of GIS in this context are modeling and maps , both of which are used to represent real-world geographic features and phenomena in a structured, analyzable format. Let's delve into these concepts, terminologies, and examples in detail. 1. Real World and Representations in GIS Concept: The real world comprises physical, tangible phenomena, such as landforms, rivers, cities, and infrastructure, as well as more abstract elements like weather patterns, population densities, and traffic flow. GIS allows us to represent these real-world phenomena digitally, enabling spatial analysis, decision-making, and visualization. The representation of the real world in GIS is achieved through various models and maps , which simplify...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du choléra dans Paris et le département de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...