Skip to main content

Snow Geophysics and Remote Sensing Graduate Opportunities starting January 2021 Boise State University.






Snow Geophysics and Remote Sensing Graduate Opportunities starting January 2021 Boise State University

The Department of Geosciences at Boise State University (Boise, Idaho, USA) has immediate openings for MSc and PhD geophysics applications on a project funded by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) entitled "Advancement of snow monitoring for water resources, vehicle mobility, and hazard mitigation: using optical, microwave, acoustic, and seismic techniques". This project aims to improve our ability to map snow properties related to hydrology and vehicle mobility, and to monitor avalanche events, using remote sensing and geophysics.  

Graduate positions are currently available to focus on 1) LiDAR and optical remote sensing of snow, 2) ground-based and InSAR radar remote sensing of snow, and 3) seismo-acoustic sensing of snow. All three projects involve data acquisition with state-of-the-art instrumentation, numerical modeling, interpretation, and analysis.  

Requirements

For all applicants, a prior degree in geophysics, engineering, physics, applied mathematics, remote sensing, or related fields is desired, with proficient skills in statistical data analysis and scientific programming (R, Python, Fortran, Matlab, or similar). Interest in snow and ice physics is expected. Experience in numerical modelling, working with Unix-like operating systems, and data acquisition, is an advantage. Good written and oral English language communication skills are expected.

Further Information

 For further information please visit http://earth.boisestate.edu or contact Hans-Peter Marshall (hpmarshall@boisestate.edu, 208-426-1416). Co-PIs Ellyn Enderlin, Dylan Mikesell, Lee Liberty, Jeff Johnson, and Jake Anderson can be contacted as well. 

The place of employment will be Boise, Idaho, USA, a metropolitan area with many outdoor opportunities close by. The targeted starting date is 1 January 2021.

Equal opportunities are an integral part of our personnel policy and we strongly encourage people from underrepresented minority groups and women to apply.

We look forward to your application! Please see this link for more information about our graduate program and how to apply. 








Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud