Skip to main content

Research Associate / Research Fellow (Marine Remote Sensing) The University of Western Australia.






Research Associate / Research Fellow (Marine Remote Sensing) The University of Western Australia


Research Associate / Research Fellow (Marine Remote Sensing)
Job no: 505000
Work type: Full time
Location: Crawley, Perth CBD
Categories: Science
Faculty of Science
Indian Ocean Marine Research Centre
Fixed term 2 year appointment, full-time basis
Salary range: Level A $70,936 p.a. – $95,464 p.a. or Level B $100,374 p.a. – $118,776 p.a. plus superannuation
The University of Western Australia (UWA) is ranked amongst the top 100 universities in the world and a member of the prestigious Australian Group of Eight research-intensive universities.  With an enviable research track record, vibrant campus and working environments, supported by the freedom to 'innovate and inspire' there is no better time to join Western Australia's top University.
About the team
The Indian Ocean Marine Research Centre (IOMRC) is a collaboration between the University of Western Australia (UWA), the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Institute of Marine Science (AIMS), and West Australia Department of Primary Industries and Regional Development.
The ICoAST project involves all IOMRC partners and will focus on several sites along Western Australia's coast including World Heritage listed Shark Bay. The project has three dedicated research themes focusing on: remote sensing of physical processes in shallow marine habitats, remote sensing of benthic habitats, and molecular ecology.
About the opportunity
Under the supervision of the Remote Sensing of Physical Processes Research Theme leads, Dr Jeff Hansen and Dr Paul Branson, this position will focus on:
Evaluating and developing satellite remote sensing methods to measure bathymetry in optically deep waters.
Contribute to the development of a low-altitude unmanned aerial vehicle (UAV) that fuses data from multiple sensors to accurately, routinely and cost-effectively measure bathymetry.
Investigate the opportunities to use novel time- and space-resolved drone measurements to observe wave and hydrodynamic processes over complex benthic habitats.
You will work in both local and remote fieldwork sites to collect ground truthing datasets, test new hardware, develop algorithms and machine-learning methods. This position will also offer you the opportunity to work closely with research staff across all research themes to integrate the remote sensing techniques to achieve broader project goals. You will also provide supervision and assist with the training of research students.
To be considered for this role, you will demonstrate:
PhD in Remote Sensing, Oceanography, Ocean Engineering, Mechatronics or related discipline
Relevant research experience in the development or application of remote sensing algorithms
Experience with data analysis using software such as Python or Matlab
Experience in preparing manuscripts for publication and giving presentations at conferences
Highly developed interpersonal, written and verbal communication skills
Ability to work independently, show initiative and work productively as part of a team
About you
To be successful in this position, you will possess experience in supervising and training undergraduate or postgraduate research students. You will be flexible and willing to participate in field activities involving overnight trips to remote locations.
A valid, or ability to obtain, a C Class driver's license and CASA Remote Pilots Licence (RePL) will also be required for this position.
Full details of the position responsibilities and the selection criteria are outlined in the position description.  In preparing your application you are asked to demonstrate clearly that you meet the selection criteria.
Please see the position description prior to applying: πŸ“· Position Description - Research Associate or Fellow (Marine Remote Sensing).pdf
Closing date: Tuesday,  20 October 2020
This position is open to international applicants.
Application Details: Please apply online via the Apply Now button.
Our commitment to inclusion and diversity
UWA is committed to a diverse workforce. We celebrate inclusion and diversity and believe gender equity is fundamental to achieving our goal of being a top 50 university by 2050.
We have child friendly areas on campus, including childcare facilities. Flexible work arrangements, part-time hours and job sharing will all be considered.
UWA has been awarded Platinum Employer Status for being a Top Ten Employer for LGBTI Inclusion by the Australian Workplace Equity Index (AWEI -2019).






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Role of Geography in Disaster Management

Geography plays a pivotal role in disaster management by facilitating an understanding of the impact of natural disasters, guiding preparedness efforts, and supporting effective response and recovery. By analyzing geographical features, environmental conditions, and historical data, geography empowers disaster management professionals to identify risks, plan for hazards, respond to emergencies, assess damage, and monitor recovery. Geographic Information Systems (GIS) serve as crucial tools, providing critical spatial data for informed decision-making throughout the disaster management cycle. Key Concepts, Terminologies, and Examples 1. Identifying Risk: Concept: Risk identification involves analyzing geographical areas to understand their susceptibility to specific natural disasters. By studying historical events, topography, climate patterns, and environmental factors, disaster management experts can predict which regions are most vulnerable. Terminologies: Hazard Risk: The pr...

Upslope and Downslope Factors in Flooding

Flooding is influenced by both upslope factors and downslope factors within a river basin. Upslope factors refer to the geographical and environmental characteristics of higher elevations that contribute to flood potential downstream. These include steep slopes, large watershed areas, and high rainfall intensity, which accelerate runoff into rivers. Downslope factors involve the characteristics of lower-elevation areas that can exacerbate flooding once water reaches them. These include narrow river channels, low-lying floodplains, poor drainage systems, and human interventions that restrict water flow. Key Factors Affecting Flooding 1. Upslope Factors (Flood Generation and Runoff Acceleration) Large Watershed Area: A bigger catchment area collects more rainfall, increasing water flow into rivers and raising flood risk. Steep Slopes: Rapid runoff from steep terrain leads to sudden surges in river levels, giving less time for infiltration. Soil Type and Vegetation Cover: ...