Skip to main content

Research Associate / Research Fellow (Marine Remote Sensing) The University of Western Australia.






Research Associate / Research Fellow (Marine Remote Sensing) The University of Western Australia


Research Associate / Research Fellow (Marine Remote Sensing)
Job no: 505000
Work type: Full time
Location: Crawley, Perth CBD
Categories: Science
Faculty of Science
Indian Ocean Marine Research Centre
Fixed term 2 year appointment, full-time basis
Salary range: Level A $70,936 p.a. – $95,464 p.a. or Level B $100,374 p.a. – $118,776 p.a. plus superannuation
The University of Western Australia (UWA) is ranked amongst the top 100 universities in the world and a member of the prestigious Australian Group of Eight research-intensive universities.  With an enviable research track record, vibrant campus and working environments, supported by the freedom to 'innovate and inspire' there is no better time to join Western Australia's top University.
About the team
The Indian Ocean Marine Research Centre (IOMRC) is a collaboration between the University of Western Australia (UWA), the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Institute of Marine Science (AIMS), and West Australia Department of Primary Industries and Regional Development.
The ICoAST project involves all IOMRC partners and will focus on several sites along Western Australia's coast including World Heritage listed Shark Bay. The project has three dedicated research themes focusing on: remote sensing of physical processes in shallow marine habitats, remote sensing of benthic habitats, and molecular ecology.
About the opportunity
Under the supervision of the Remote Sensing of Physical Processes Research Theme leads, Dr Jeff Hansen and Dr Paul Branson, this position will focus on:
Evaluating and developing satellite remote sensing methods to measure bathymetry in optically deep waters.
Contribute to the development of a low-altitude unmanned aerial vehicle (UAV) that fuses data from multiple sensors to accurately, routinely and cost-effectively measure bathymetry.
Investigate the opportunities to use novel time- and space-resolved drone measurements to observe wave and hydrodynamic processes over complex benthic habitats.
You will work in both local and remote fieldwork sites to collect ground truthing datasets, test new hardware, develop algorithms and machine-learning methods. This position will also offer you the opportunity to work closely with research staff across all research themes to integrate the remote sensing techniques to achieve broader project goals. You will also provide supervision and assist with the training of research students.
To be considered for this role, you will demonstrate:
PhD in Remote Sensing, Oceanography, Ocean Engineering, Mechatronics or related discipline
Relevant research experience in the development or application of remote sensing algorithms
Experience with data analysis using software such as Python or Matlab
Experience in preparing manuscripts for publication and giving presentations at conferences
Highly developed interpersonal, written and verbal communication skills
Ability to work independently, show initiative and work productively as part of a team
About you
To be successful in this position, you will possess experience in supervising and training undergraduate or postgraduate research students. You will be flexible and willing to participate in field activities involving overnight trips to remote locations.
A valid, or ability to obtain, a C Class driver's license and CASA Remote Pilots Licence (RePL) will also be required for this position.
Full details of the position responsibilities and the selection criteria are outlined in the position description.  In preparing your application you are asked to demonstrate clearly that you meet the selection criteria.
Please see the position description prior to applying: 📷 Position Description - Research Associate or Fellow (Marine Remote Sensing).pdf
Closing date: Tuesday,  20 October 2020
This position is open to international applicants.
Application Details: Please apply online via the Apply Now button.
Our commitment to inclusion and diversity
UWA is committed to a diverse workforce. We celebrate inclusion and diversity and believe gender equity is fundamental to achieving our goal of being a top 50 university by 2050.
We have child friendly areas on campus, including childcare facilities. Flexible work arrangements, part-time hours and job sharing will all be considered.
UWA has been awarded Platinum Employer Status for being a Top Ten Employer for LGBTI Inclusion by the Australian Workplace Equity Index (AWEI -2019).






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces