Skip to main content

Postdoc in remote sensing and ecosystem modelling Swiss Federal Institute for Forest, Snow and Landscape Research






Postdoc in remote sensing and ecosystem modelling Swiss Federal Institute for Forest, Snow and Landscape Research

Swiss Federal Institute for Forest, Snow and Landscape Research WSL
The Swiss Federal Institute for Forest, Snow and Landscape Research WSL is part of the ETH Domain. Approximately 600 people work on the sustainable use and protection of the environment and on the handling of natural hazards.
The Research Unit Forest Dynamics assesses the effects of changing environmental conditions on forest ecosystem functioning. We are offering for 7 months a position as
Postdoc in remote sensing and ecosystem modelling
You will investigate ecosystem photosynthesis and impacts of extreme cold temperature events in the early season. The challenge is to identify causes, understand mechanisms, and to quantify effects at the continental scale. To achieve this, you will work with ecosystem eddy covariance flux measurements from a large number of sites, develop model parametrisations to resolve apparent model bias, and investigate links between flux measurements and multispectral remote sensing data. You will be part of a diverse group with complimentary expertise, relevant for this project and with a strong collaborative philosophy. You will benefit from a world-leading academic environment at WSL and ETH Zürich (through co-supervision) and the excellent quality of life in Switzerland. The funding for this project is seven months and opens the door for upcoming opportunities within the groups of project collaborators at WSL and ETH Zürich. Your working place will be at WSL in Birmensdorf (approx. 20 min outside of Zurich). For further information about the project please visit the website https://stineb.github.io/project/photocold/
You hold a PhD in ecology or environmental sciences with a particular focus in remote sensing or environmental modelling. This position requires independent and creative thinking to formulate hypotheses; familiarity with plant ecophysiology, remote sensing and eddy covariance data; a robust skill set for methods in environmental data science (analysis of large datasets and mechanistic ecosystem modelling modelling); and the curiosity and intrinsic motivation to address an important research challenge for a better understanding of global environmental change and climate impacts.
Please send your complete application to Stefania Pe, Human Resources WSL, by uploading the requested documents through our webpage. Applications via email will not be considered. Questions regarding the position can be directed by email or phone to project collaborators Prof. A. Gessler (arthur.gessler@wsl.ch, +41 44 739 28 18), Prof. B. Stocker (bestocke@ethz.ch, +41 44 632 48 90), Dr. Petra D'Odorico (petra.dodorico@wsl.ch, +41 44 739 20 46), or Dr. Christian Ginzler (christian.ginzler@wsl.ch, +41 44 739 25 51). The WSL strives to increase the proportion of women in its employment, which is why qualified women are particularly called upon to apply for this position.
Apply now
Apply with xeebo
Zürcherstrasse 111, CH-8903 Birmensdorf
Company-Video






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud