Skip to main content

Postdoc in remote sensing and ecosystem modelling Swiss Federal Institute for Forest, Snow and Landscape Research






Postdoc in remote sensing and ecosystem modelling Swiss Federal Institute for Forest, Snow and Landscape Research

Swiss Federal Institute for Forest, Snow and Landscape Research WSL
The Swiss Federal Institute for Forest, Snow and Landscape Research WSL is part of the ETH Domain. Approximately 600 people work on the sustainable use and protection of the environment and on the handling of natural hazards.
The Research Unit Forest Dynamics assesses the effects of changing environmental conditions on forest ecosystem functioning. We are offering for 7 months a position as
Postdoc in remote sensing and ecosystem modelling
You will investigate ecosystem photosynthesis and impacts of extreme cold temperature events in the early season. The challenge is to identify causes, understand mechanisms, and to quantify effects at the continental scale. To achieve this, you will work with ecosystem eddy covariance flux measurements from a large number of sites, develop model parametrisations to resolve apparent model bias, and investigate links between flux measurements and multispectral remote sensing data. You will be part of a diverse group with complimentary expertise, relevant for this project and with a strong collaborative philosophy. You will benefit from a world-leading academic environment at WSL and ETH Zürich (through co-supervision) and the excellent quality of life in Switzerland. The funding for this project is seven months and opens the door for upcoming opportunities within the groups of project collaborators at WSL and ETH Zürich. Your working place will be at WSL in Birmensdorf (approx. 20 min outside of Zurich). For further information about the project please visit the website https://stineb.github.io/project/photocold/
You hold a PhD in ecology or environmental sciences with a particular focus in remote sensing or environmental modelling. This position requires independent and creative thinking to formulate hypotheses; familiarity with plant ecophysiology, remote sensing and eddy covariance data; a robust skill set for methods in environmental data science (analysis of large datasets and mechanistic ecosystem modelling modelling); and the curiosity and intrinsic motivation to address an important research challenge for a better understanding of global environmental change and climate impacts.
Please send your complete application to Stefania Pe, Human Resources WSL, by uploading the requested documents through our webpage. Applications via email will not be considered. Questions regarding the position can be directed by email or phone to project collaborators Prof. A. Gessler (arthur.gessler@wsl.ch, +41 44 739 28 18), Prof. B. Stocker (bestocke@ethz.ch, +41 44 632 48 90), Dr. Petra D'Odorico (petra.dodorico@wsl.ch, +41 44 739 20 46), or Dr. Christian Ginzler (christian.ginzler@wsl.ch, +41 44 739 25 51). The WSL strives to increase the proportion of women in its employment, which is why qualified women are particularly called upon to apply for this position.
Apply now
Apply with xeebo
Zürcherstrasse 111, CH-8903 Birmensdorf
Company-Video






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Earthquake. Terminology and Concept

Earthquake It is a transient violent movement of the Earth's surface that follows a release of energy in the Earth's crust. 2. Magnitude It is a measure of the amount of energy released during an earthquake and expressed by Richter scale. Effect of earthquake according to Richter scale . Richter Magnitude Earthquake effects Less than 3.5 Generally not felt, but recorded. 3.5-5.4 Often felt, but rarely causes damage. Under 6.0 At most, slight damage to well-designed buildings. Can cause major damage to poorly constructed buildings over small regions. 6.1-6.9 Can be destructive in areas up to about 100 across where people live. 7.0-7.9 Major earthquake. Can cause serious damage over larger areas. 8 or greater Great Earthquake. Can cause serious damage in areas several hundred across. 3. Intensity Intensity is a qualitative measure of the actual shaking at a location during an Earthquake, and is assigned in Roman Capital Numerical. It refers to the effects of earthqu