Skip to main content

Postdoc in remote sensing and ecosystem modelling Swiss Federal Institute for Forest, Snow and Landscape Research






Postdoc in remote sensing and ecosystem modelling Swiss Federal Institute for Forest, Snow and Landscape Research

Swiss Federal Institute for Forest, Snow and Landscape Research WSL
The Swiss Federal Institute for Forest, Snow and Landscape Research WSL is part of the ETH Domain. Approximately 600 people work on the sustainable use and protection of the environment and on the handling of natural hazards.
The Research Unit Forest Dynamics assesses the effects of changing environmental conditions on forest ecosystem functioning. We are offering for 7 months a position as
Postdoc in remote sensing and ecosystem modelling
You will investigate ecosystem photosynthesis and impacts of extreme cold temperature events in the early season. The challenge is to identify causes, understand mechanisms, and to quantify effects at the continental scale. To achieve this, you will work with ecosystem eddy covariance flux measurements from a large number of sites, develop model parametrisations to resolve apparent model bias, and investigate links between flux measurements and multispectral remote sensing data. You will be part of a diverse group with complimentary expertise, relevant for this project and with a strong collaborative philosophy. You will benefit from a world-leading academic environment at WSL and ETH Zürich (through co-supervision) and the excellent quality of life in Switzerland. The funding for this project is seven months and opens the door for upcoming opportunities within the groups of project collaborators at WSL and ETH Zürich. Your working place will be at WSL in Birmensdorf (approx. 20 min outside of Zurich). For further information about the project please visit the website https://stineb.github.io/project/photocold/
You hold a PhD in ecology or environmental sciences with a particular focus in remote sensing or environmental modelling. This position requires independent and creative thinking to formulate hypotheses; familiarity with plant ecophysiology, remote sensing and eddy covariance data; a robust skill set for methods in environmental data science (analysis of large datasets and mechanistic ecosystem modelling modelling); and the curiosity and intrinsic motivation to address an important research challenge for a better understanding of global environmental change and climate impacts.
Please send your complete application to Stefania Pe, Human Resources WSL, by uploading the requested documents through our webpage. Applications via email will not be considered. Questions regarding the position can be directed by email or phone to project collaborators Prof. A. Gessler (arthur.gessler@wsl.ch, +41 44 739 28 18), Prof. B. Stocker (bestocke@ethz.ch, +41 44 632 48 90), Dr. Petra D'Odorico (petra.dodorico@wsl.ch, +41 44 739 20 46), or Dr. Christian Ginzler (christian.ginzler@wsl.ch, +41 44 739 25 51). The WSL strives to increase the proportion of women in its employment, which is why qualified women are particularly called upon to apply for this position.
Apply now
Apply with xeebo
Zürcherstrasse 111, CH-8903 Birmensdorf
Company-Video






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...