Skip to main content

Postdoc in remote sensing and ecosystem modelling Swiss Federal Institute for Forest, Snow and Landscape Research






Postdoc in remote sensing and ecosystem modelling Swiss Federal Institute for Forest, Snow and Landscape Research

Swiss Federal Institute for Forest, Snow and Landscape Research WSL
The Swiss Federal Institute for Forest, Snow and Landscape Research WSL is part of the ETH Domain. Approximately 600 people work on the sustainable use and protection of the environment and on the handling of natural hazards.
The Research Unit Forest Dynamics assesses the effects of changing environmental conditions on forest ecosystem functioning. We are offering for 7 months a position as
Postdoc in remote sensing and ecosystem modelling
You will investigate ecosystem photosynthesis and impacts of extreme cold temperature events in the early season. The challenge is to identify causes, understand mechanisms, and to quantify effects at the continental scale. To achieve this, you will work with ecosystem eddy covariance flux measurements from a large number of sites, develop model parametrisations to resolve apparent model bias, and investigate links between flux measurements and multispectral remote sensing data. You will be part of a diverse group with complimentary expertise, relevant for this project and with a strong collaborative philosophy. You will benefit from a world-leading academic environment at WSL and ETH Zürich (through co-supervision) and the excellent quality of life in Switzerland. The funding for this project is seven months and opens the door for upcoming opportunities within the groups of project collaborators at WSL and ETH Zürich. Your working place will be at WSL in Birmensdorf (approx. 20 min outside of Zurich). For further information about the project please visit the website https://stineb.github.io/project/photocold/
You hold a PhD in ecology or environmental sciences with a particular focus in remote sensing or environmental modelling. This position requires independent and creative thinking to formulate hypotheses; familiarity with plant ecophysiology, remote sensing and eddy covariance data; a robust skill set for methods in environmental data science (analysis of large datasets and mechanistic ecosystem modelling modelling); and the curiosity and intrinsic motivation to address an important research challenge for a better understanding of global environmental change and climate impacts.
Please send your complete application to Stefania Pe, Human Resources WSL, by uploading the requested documents through our webpage. Applications via email will not be considered. Questions regarding the position can be directed by email or phone to project collaborators Prof. A. Gessler (arthur.gessler@wsl.ch, +41 44 739 28 18), Prof. B. Stocker (bestocke@ethz.ch, +41 44 632 48 90), Dr. Petra D'Odorico (petra.dodorico@wsl.ch, +41 44 739 20 46), or Dr. Christian Ginzler (christian.ginzler@wsl.ch, +41 44 739 25 51). The WSL strives to increase the proportion of women in its employment, which is why qualified women are particularly called upon to apply for this position.
Apply now
Apply with xeebo
Zürcherstrasse 111, CH-8903 Birmensdorf
Company-Video






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces