Skip to main content

PHD STUDENT POSITION ON ANTARCTIC VEGETATION ECOLOGY AND REMOTE SENSING Vrije Universiteit Amsterdam. 4 research positions





PHD STUDENT POSITION ON ANTARCTIC VEGETATION ECOLOGY AND REMOTE SENSING Vrije Universiteit Amsterdam


4 research positions (2 PhDs and 2 postdocs) will be available at the Department of Ecological Science, for the research project entitled "The Antarctic biota count (ABC): a functional trait-based approach to scale biodiversity from plot to region'', funded by the Netherlands Polar Program (NWO).

Locatie: AMSTERDAM
FTE: 1
JOB DESCRIPTION
The aim of this work package is to quantify the cover of dominant cryptogam groups along the Antarctic Peninsula region. A central question within this package is: 'How much vegetation cover is there along the Antarctic Peninsula?' By linking surveys of vegetation type and cover to remote sensing methods we aim to scale plot measurements to the entire Antarctic Peninsula region. To unravel the mechanism behind species specific reflectance spectra, the intended PhD will also work on physiological aspects and characteristics of the main cryptogam (lichen and moss) groups.

Your duties
Quantify cover of dominant cryptogam groups at various field sites along the Antarctic Peninsula. Use remote sensing techniques to scale plot measurements to regional cover of dominant cryptogam groups along the Antarctic Peninsula
Unravel the morphological/physiological mechanisms behind cryptogam specific reflectance spectra
Make vegetation maps of dominant cryptogam groups along the Antarctic Peninsula
The applicant will present the results at national and international conferences, and contribute to teaching courses
Write four peer-reviewed publications that will be the basis of the PhD thesis
REQUIREMENTS
MSc in Ecological Sciences or comparable, with relevant research experience
Experience with cryptogam ecology/identification is a plus
Experience with remote sensing methods or willingness to learn this
Willingness and physical ability to work in cold and remote Antarctic regions for 2-5 months/year
Proficiency with statistical approaches and use of R
Excellent social skills to work in an interdisciplinary international research team
English language proficiency both in speech and in writing. Please provide evidence for the latter.
WHAT ARE WE OFFERING?
A challenging position in a socially involved organization. The salary will be in accordance with university regulations for academic personnel and amounts €2,395 (PhD) per month during the first year and increases to €3,061 (PhD) per month during the fourth year, based on a full-time employment. The job profile: is based on the university job ranking system and is vacant for at least 1 FTE.

The appointment will initially be for 1 year. After a satisfactory evaluation of the initial appointment, the contract will be extended for a total duration of 4 years.
Additionally, Vrije Universiteit Amsterdam offers excellent fringe benefits and various schemes and regulations to promote a good work/life balance, such as:
a maximum of 41 days of annual leave based on full-time employment
8% holiday allowance and 8.3% end-of-year bonus
a wide range of sports facilities which staff may use at a modest charge
ABOUT VRIJE UNIVERSITEIT AMSTERDAM
The ambition of Vrije Universiteit Amsterdam is clear: to contribute to a better world through outstanding education and ground-breaking research. We strive to be a university where personal development and commitment to society play a leading role. A university where people from different disciplines and backgrounds collaborate to achieve innovations and to generate new knowledge. Our teaching and research encompass the entire spectrum of academic endeavour – from the humanities, the social sciences and the natural sciences through to the life sciences and the medical sciences.

Vrije Universiteit Amsterdam is home to more than 26,000 students. We employ over 4,600 individuals. The VU campus is easily accessible and located in the heart of Amsterdam's Zuidas district, a truly inspiring environment for teaching and research.

Diversity
We are an inclusive university community. Diversity is one of our most important values. We believe that engaging in international activities and welcoming students and staff from a wide variety of backgrounds enhances the quality of our education and research. We are always looking for people who can enrich our world with their own unique perspectives and experiences.

The Faculty of Science
The Faculty of Science inspires researchers and students to find sustainable solutions for complex societal issues. From forest fires to big data, from obesity to medicines and from molecules to the moon: our teaching and research programmes cover the full spectrum of the natural sciences. We share knowledge and experience with leading research institutes and industries, both here in the Netherlands and abroad.

Working at the Faculty of Science means working with students, PhD candidates and researchers, all with a clear focus on their field and a broad view of the world. We employ more than 1,250 staff members, and we are home to around 6,000 students.
About the department, institute, project
The Department of Ecological Science (DES) answers fundamental ecological and evolutionary questions regarding the relationship between organisms and their environment at the full array of hierarchical levels: from molecular ecology to ecosystem research. The department comprises a dynamic community of researchers and provides an excellent research environment with state-of-the-art facilities and high quality training.

The overall aim of this project is to deliver spatially explicit data on terrestrial biodiversity along the Antarctic Peninsula for evidence-based systematic conservation planning. Each research position has its own objectives but by combining the data from each work package, we aim to deliver a comprehensive status of the current vegetation and associated biodiversity patterns. This will form a data-driven approach to Antarctic conservation planning and provide a baseline to which future changes can be monitored. The project will be run in close collaboration with the British Antarctic Survey (UK), University of Birmingham (UK) and the University of Insubria (Italy).
APPLICATION
Are you interested in this position? Applicants are requested to write a letter in which they describe their abilities and motivation, accompanied by a curriculum vitae and the names of one or two references. Applications (mention the vacancy number) should be sent before November 10th, 2020 to the attention of Prof. Dr. Hans Cornelissen.

Applications received by e-mail will not be processed.

Vacancy questions
If you have any questions regarding this vacancy, you may contact:

Name: Prof.dr. J.H.C. (Hans) Cornelissen
or
Name: Dr. S.F. (Stef) Bokhorst
Phone number +31 (0)20 5987078 




Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...