Skip to main content

PHD STUDENT POSITION ON ANTARCTIC VEGETATION ECOLOGY AND REMOTE SENSING Vrije Universiteit Amsterdam. 4 research positions





PHD STUDENT POSITION ON ANTARCTIC VEGETATION ECOLOGY AND REMOTE SENSING Vrije Universiteit Amsterdam


4 research positions (2 PhDs and 2 postdocs) will be available at the Department of Ecological Science, for the research project entitled "The Antarctic biota count (ABC): a functional trait-based approach to scale biodiversity from plot to region'', funded by the Netherlands Polar Program (NWO).

Locatie: AMSTERDAM
FTE: 1
JOB DESCRIPTION
The aim of this work package is to quantify the cover of dominant cryptogam groups along the Antarctic Peninsula region. A central question within this package is: 'How much vegetation cover is there along the Antarctic Peninsula?' By linking surveys of vegetation type and cover to remote sensing methods we aim to scale plot measurements to the entire Antarctic Peninsula region. To unravel the mechanism behind species specific reflectance spectra, the intended PhD will also work on physiological aspects and characteristics of the main cryptogam (lichen and moss) groups.

Your duties
Quantify cover of dominant cryptogam groups at various field sites along the Antarctic Peninsula. Use remote sensing techniques to scale plot measurements to regional cover of dominant cryptogam groups along the Antarctic Peninsula
Unravel the morphological/physiological mechanisms behind cryptogam specific reflectance spectra
Make vegetation maps of dominant cryptogam groups along the Antarctic Peninsula
The applicant will present the results at national and international conferences, and contribute to teaching courses
Write four peer-reviewed publications that will be the basis of the PhD thesis
REQUIREMENTS
MSc in Ecological Sciences or comparable, with relevant research experience
Experience with cryptogam ecology/identification is a plus
Experience with remote sensing methods or willingness to learn this
Willingness and physical ability to work in cold and remote Antarctic regions for 2-5 months/year
Proficiency with statistical approaches and use of R
Excellent social skills to work in an interdisciplinary international research team
English language proficiency both in speech and in writing. Please provide evidence for the latter.
WHAT ARE WE OFFERING?
A challenging position in a socially involved organization. The salary will be in accordance with university regulations for academic personnel and amounts €2,395 (PhD) per month during the first year and increases to €3,061 (PhD) per month during the fourth year, based on a full-time employment. The job profile: is based on the university job ranking system and is vacant for at least 1 FTE.

The appointment will initially be for 1 year. After a satisfactory evaluation of the initial appointment, the contract will be extended for a total duration of 4 years.
Additionally, Vrije Universiteit Amsterdam offers excellent fringe benefits and various schemes and regulations to promote a good work/life balance, such as:
a maximum of 41 days of annual leave based on full-time employment
8% holiday allowance and 8.3% end-of-year bonus
a wide range of sports facilities which staff may use at a modest charge
ABOUT VRIJE UNIVERSITEIT AMSTERDAM
The ambition of Vrije Universiteit Amsterdam is clear: to contribute to a better world through outstanding education and ground-breaking research. We strive to be a university where personal development and commitment to society play a leading role. A university where people from different disciplines and backgrounds collaborate to achieve innovations and to generate new knowledge. Our teaching and research encompass the entire spectrum of academic endeavour – from the humanities, the social sciences and the natural sciences through to the life sciences and the medical sciences.

Vrije Universiteit Amsterdam is home to more than 26,000 students. We employ over 4,600 individuals. The VU campus is easily accessible and located in the heart of Amsterdam's Zuidas district, a truly inspiring environment for teaching and research.

Diversity
We are an inclusive university community. Diversity is one of our most important values. We believe that engaging in international activities and welcoming students and staff from a wide variety of backgrounds enhances the quality of our education and research. We are always looking for people who can enrich our world with their own unique perspectives and experiences.

The Faculty of Science
The Faculty of Science inspires researchers and students to find sustainable solutions for complex societal issues. From forest fires to big data, from obesity to medicines and from molecules to the moon: our teaching and research programmes cover the full spectrum of the natural sciences. We share knowledge and experience with leading research institutes and industries, both here in the Netherlands and abroad.

Working at the Faculty of Science means working with students, PhD candidates and researchers, all with a clear focus on their field and a broad view of the world. We employ more than 1,250 staff members, and we are home to around 6,000 students.
About the department, institute, project
The Department of Ecological Science (DES) answers fundamental ecological and evolutionary questions regarding the relationship between organisms and their environment at the full array of hierarchical levels: from molecular ecology to ecosystem research. The department comprises a dynamic community of researchers and provides an excellent research environment with state-of-the-art facilities and high quality training.

The overall aim of this project is to deliver spatially explicit data on terrestrial biodiversity along the Antarctic Peninsula for evidence-based systematic conservation planning. Each research position has its own objectives but by combining the data from each work package, we aim to deliver a comprehensive status of the current vegetation and associated biodiversity patterns. This will form a data-driven approach to Antarctic conservation planning and provide a baseline to which future changes can be monitored. The project will be run in close collaboration with the British Antarctic Survey (UK), University of Birmingham (UK) and the University of Insubria (Italy).
APPLICATION
Are you interested in this position? Applicants are requested to write a letter in which they describe their abilities and motivation, accompanied by a curriculum vitae and the names of one or two references. Applications (mention the vacancy number) should be sent before November 10th, 2020 to the attention of Prof. Dr. Hans Cornelissen.

Applications received by e-mail will not be processed.

Vacancy questions
If you have any questions regarding this vacancy, you may contact:

Name: Prof.dr. J.H.C. (Hans) Cornelissen
or
Name: Dr. S.F. (Stef) Bokhorst
Phone number +31 (0)20 5987078 




Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Earthquake. Terminology and Concept

Earthquake It is a transient violent movement of the Earth's surface that follows a release of energy in the Earth's crust. 2. Magnitude It is a measure of the amount of energy released during an earthquake and expressed by Richter scale. Effect of earthquake according to Richter scale . Richter Magnitude Earthquake effects Less than 3.5 Generally not felt, but recorded. 3.5-5.4 Often felt, but rarely causes damage. Under 6.0 At most, slight damage to well-designed buildings. Can cause major damage to poorly constructed buildings over small regions. 6.1-6.9 Can be destructive in areas up to about 100 across where people live. 7.0-7.9 Major earthquake. Can cause serious damage over larger areas. 8 or greater Great Earthquake. Can cause serious damage in areas several hundred across. 3. Intensity Intensity is a qualitative measure of the actual shaking at a location during an Earthquake, and is assigned in Roman Capital Numerical. It refers to the effects of earthqu