Skip to main content

PhD Student Position in SAR Interferometry/Tomography ETH Zürich






PhD Student Position in SAR Interferometry/Tomography ETH Zürich


The Earth Observation and Remote Sensing Group, Institute of Environmental Engineering, at ETH Zurich is seeking a PhD student for a research project on Interferometric / Tomographic Techniques in Synthetic Aperture Radar (SAR) Remote Sensing to Monitor Surface Displacements starting from autumn/winter 2020/2021.
Job description
The research focuses on investigating methods and algorithms in the context of synthetic aperture radar (SAR) multibaseline interferometry and SAR tomography for space-based monitoring of ground-surface displacements. By using repeat-pass SAR interferometry, deformation measurements at cm/mm level over longer time spans can be obtained for extended areas. SAR interferometry therefore complements point-based measurement techniques such as observations with total station theodolites, Global Navigation Satellite System (GNSS)-based, or levelling-based measurements of surface displacements.
Mountainous areas with large topographic variations are prone to various geohazards. At the same time, mountainous areas are challenging to monitor with SAR interferometry due to strong and relatively small-scale spatiotemporal variations in the tropospheric conditions, obstructed views (layover and shadow), partial snow or vegetation cover, and other surface processes.
The research builds upon previous work performed in our group and aims at improving the spatiotemporal coverage, the precision, and the automated generation of spaceborne-radar-based maps of surface displacements in mountainous areas.
Your profile
We are looking for a highly motivated candidate holding a master's degree or a diploma in electrical engineering, geomatics engineering, geophysics, physics or a related field with a background in digital signal processing and/or image processing. Previous experience in SAR signal processing or another field of array signal processing is an asset. The successful candidate has strong analytical skills and programming experience in Matlab, Python, C/C++, or equivalent, and is capable to develop and implement signal-processing algorithms in such a programming language. Fluency in English is required (oral and written), and it is essential that the candidate is willing to work in a multidisciplinary and international research team. Applicants should hold a valid driver's license (European Cat. B).
We are offering a position in an attractive research environment within a young, highly motivated, and international research team.





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces