Skip to main content

PhD Student Position in SAR Interferometry/Tomography ETH Zürich






PhD Student Position in SAR Interferometry/Tomography ETH Zürich


The Earth Observation and Remote Sensing Group, Institute of Environmental Engineering, at ETH Zurich is seeking a PhD student for a research project on Interferometric / Tomographic Techniques in Synthetic Aperture Radar (SAR) Remote Sensing to Monitor Surface Displacements starting from autumn/winter 2020/2021.
Job description
The research focuses on investigating methods and algorithms in the context of synthetic aperture radar (SAR) multibaseline interferometry and SAR tomography for space-based monitoring of ground-surface displacements. By using repeat-pass SAR interferometry, deformation measurements at cm/mm level over longer time spans can be obtained for extended areas. SAR interferometry therefore complements point-based measurement techniques such as observations with total station theodolites, Global Navigation Satellite System (GNSS)-based, or levelling-based measurements of surface displacements.
Mountainous areas with large topographic variations are prone to various geohazards. At the same time, mountainous areas are challenging to monitor with SAR interferometry due to strong and relatively small-scale spatiotemporal variations in the tropospheric conditions, obstructed views (layover and shadow), partial snow or vegetation cover, and other surface processes.
The research builds upon previous work performed in our group and aims at improving the spatiotemporal coverage, the precision, and the automated generation of spaceborne-radar-based maps of surface displacements in mountainous areas.
Your profile
We are looking for a highly motivated candidate holding a master's degree or a diploma in electrical engineering, geomatics engineering, geophysics, physics or a related field with a background in digital signal processing and/or image processing. Previous experience in SAR signal processing or another field of array signal processing is an asset. The successful candidate has strong analytical skills and programming experience in Matlab, Python, C/C++, or equivalent, and is capable to develop and implement signal-processing algorithms in such a programming language. Fluency in English is required (oral and written), and it is essential that the candidate is willing to work in a multidisciplinary and international research team. Applicants should hold a valid driver's license (European Cat. B).
We are offering a position in an attractive research environment within a young, highly motivated, and international research team.





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...