Skip to main content

PhD positions (m/f/d) | Flora Incognita Max Planck Institute for Biogeochemistry





2 PhD positions (m/f/d) | Flora Incognita Max Planck Institute for Biogeochemistry


Job Offer from October 26, 2020
The Max Planck Institute for Biogeochemistry (MPI-BGC) in Jena is dedicated to interdisciplinary basic research in the field of Earth System Sciences with a focus on climate and ecosystems. The internationally renowned institute, which currently employs around 230 people, will celebrate its 25th anniversary in 2022. Jena is known for its high-tech industry, internationally renowned research facilities and a modern university. But it also has a beautiful natural setting in the green Saale valley with steep limestone slopes. The city of Jena has an active student scene and a diverse cultural life. In our Flora Incognita group we are looking for 2 PhD positions (m/f/d) limited to 3 years.
Background and position description:
Citizen Science approaches combined with latest machine learning are cutting-edge research topics embraced by the research group "Flora Incognita" at the MPI for Biogeochemistry. Our interdisciplinary team including botanists, computer scientists, physics, and media experts is working on transferring traditional plant identification into the digital age. In the long term, the data of the Flora Incognita app will enable us to investigate ecological and conservation issues. When do which species bloom? How much do morphological features of plant species vary? What is the relationship between plant occurrence and climate and land use change? Pressing questions of this kind will be addressed in two PhD projects starting early 2020:
Position I: Flora Incognita data for phenological modeling
Phenology is an important bioindicator of climate change. Flora Incognita provides us with important information about when, for example, plants are flowering. This PhD thesis will investigate to what extent Flora Incognita observations are suitable for phenological monitoring. Specific research topics are:
Comparison of Flora Incognita observations with high-level phenological observations
Integration of Flora Incognita observation data into process-based phenological models
New development of phenological models with new methods (e.g. deep learning)
Automatic image-based recognition of phenological states
Position II: Flora Incognita for species distribution modeling
Predicting species distribution plays an important role in many ecological applications and nature conservation issues. The PhD project aims to explore whether Flora Incognita data allow predictions of temporal and spatial species distribution patterns. Research topics are:
Integration of Flora Incognita observations into species distribution models at the level of single species and communities
Improving automatic recognition of plant species by integration of additional metadata (e.g. location and time)
Both doctoral projects combine the following key aspects:
analysis of high-dimensional ecological and environmental data with novel predictive methods
data integration across scales (e.g. in-situ and remote sensing satellite observations) and sources (e.g. crowdsourced vs. structured)
application of the latest machine learning methods in ecological modelling
The projects are carried out in close cooperation with the computer scientists at the chair of Prof. Mäder at the TU Ilmenau, with the "Biosphere-Atmosphere Interactions and Experimentation" group at the MPI-BGC (Dr. Mirco Migliavacca), and the "Earth System Data Science Group" (Prof. Miguel Mahecha) at the Leipzig University.
Your Profile:
Master degree (or equivalent) in Biology, Environmental Sciences, Remote Sensing, Computer Sciences, Applied mathematics, or any related field
Very good knowledge in statistics
Very good knowledge of at least one scripting language (e.g. R, Python, Julia)
Good communication skills in English and strong interest to work in an interdisciplinary research team
Our offer:
Become part of an internationally connected and renowned research environment. The conditions of employment, including upgrades and duration follow the rules of the Max Planck Society for the Advancement of Sciences and those of the German civil service. Remuneration follows in accordance with the TVöD public-sector pay grade 13 (65%). The Max Planck Society strives for equality between women and men and for diversity. It aims to increase the proportion of women in those areas in which they are underrepresented. Women are therefore expressly encouraged to apply. We welcome applications from all areas. The Max Planck Society has set itself the goal of employing more severely disabled people. Applications from severely disabled persons are expressly welcome.
Your application:
For further enquiries please contact Dr. Jana Wäldchen (jwald@bgc-jena.mpg.de). Please send your applications including a letter of interest, CV, copies of certificates and the names and contact information of two references by 30th November 2020 with reference number 26/2020 to:
Max Planck Institute for Biogeochemistry
Personalbüro: Kennwort "Flora Incognita"
Hans-Knöll-Straße 10
07745 Jena
Germany
or preferably as a coherent pdf document with the corresponding subject: bewerbung@bgc-jena.mpg.de. Please do not use any application folders, but submit copies only, as your documents will be destroyed in accordance with data protection laws after the application process is completed. We are looking forward to your application!





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Neighbourhood Operations

 Neighbourhood Operations in GIS? In GIS and raster data , neighbourhood operations look at a group of nearby pixels (not just one) to understand or change a pixel's value. Think of it like checking what's around a house before deciding what color to paint it! Why "Neighbourhood"? Each pixel has " neighbours " (just like how your house has nearby houses). Neighbourhood operations check these nearby pixels and do some calculation to get a new value. 1. Aggregations (Summarizing Nearby Values) Aggregation means combining values of several pixels into one. We do this to: Find the average of surrounding pixels Find the minimum or maximum value Smooth the map (make it less rough) 🧒🏻 Example: Imagine checking the test scores of 9 students sitting around you and finding the average score . That's aggregation!  2. Filtering Techniques Filtering is used to improve or highlight features in a raster image, just like f...

Morpho-Tectonic Framework of India

The MorphoTectonic Framework of India refers to the combined study of the country's landforms (morphology) and its geological tectonic features. This framework provides insights into how geological forces have shaped India's topography over millions of years. Here's a breakdown of this concept: 1. Morphology: This aspect focuses on the physical features and landforms of India. It includes the study of mountains, plateaus, plains, valleys, rivers, and other surface features. For example, the Himalayas, Western Ghats, IndoGangetic Plains, and Deccan Plateau are prominent morphological features of India. 2. Tectonics: Tectonics deals with the movement and deformation of the Earth's lithosphere (the outermost rigid layer of the Earth). In the case of India, it primarily involves the interactions of the Indian Plate with neighboring tectonic plates. India is situated at the convergence of several major tectonic boundaries:     Collision with the Eurasian Plate: The most sign...

EMR Spectrum Remote Sensing

The Electromagnetic Radiation (EMR) Spectrum is like a set of invisible waves that carry energy. In remote sensing , satellites and sensors use these waves to collect information about the Earth —like forests, water, cities, clouds, temperature, and more. Just like how our eyes can only see visible light (like colors in a rainbow), sensors in remote sensing can "see" many more types of waves that humans can't.  Types of EMR Used in Remote Sensing: Type of Wave Wavelength What It's Used For Example Visible Light 0.4 – 0.7 micrometers To take normal satellite images Google Earth pictures Near-Infrared 0.7 – 1.0 µm To check plant health Green areas, farming Shortwave Infrared (SWIR) 1.0 – 3.0 µm To see moisture in soil and vegetation Drought or wetness studies Thermal Infrared (TIR) 8.0 – 14.0 µm To measure surface temperature Heat from buildings, forest fires Microwaves 1 mm – 1 meter To see through clouds and at night (radar) Flood detection, weather, disaster...