Skip to main content

PhD positions (m/f/d) | Flora Incognita Max Planck Institute for Biogeochemistry





2 PhD positions (m/f/d) | Flora Incognita Max Planck Institute for Biogeochemistry


Job Offer from October 26, 2020
The Max Planck Institute for Biogeochemistry (MPI-BGC) in Jena is dedicated to interdisciplinary basic research in the field of Earth System Sciences with a focus on climate and ecosystems. The internationally renowned institute, which currently employs around 230 people, will celebrate its 25th anniversary in 2022. Jena is known for its high-tech industry, internationally renowned research facilities and a modern university. But it also has a beautiful natural setting in the green Saale valley with steep limestone slopes. The city of Jena has an active student scene and a diverse cultural life. In our Flora Incognita group we are looking for 2 PhD positions (m/f/d) limited to 3 years.
Background and position description:
Citizen Science approaches combined with latest machine learning are cutting-edge research topics embraced by the research group "Flora Incognita" at the MPI for Biogeochemistry. Our interdisciplinary team including botanists, computer scientists, physics, and media experts is working on transferring traditional plant identification into the digital age. In the long term, the data of the Flora Incognita app will enable us to investigate ecological and conservation issues. When do which species bloom? How much do morphological features of plant species vary? What is the relationship between plant occurrence and climate and land use change? Pressing questions of this kind will be addressed in two PhD projects starting early 2020:
Position I: Flora Incognita data for phenological modeling
Phenology is an important bioindicator of climate change. Flora Incognita provides us with important information about when, for example, plants are flowering. This PhD thesis will investigate to what extent Flora Incognita observations are suitable for phenological monitoring. Specific research topics are:
Comparison of Flora Incognita observations with high-level phenological observations
Integration of Flora Incognita observation data into process-based phenological models
New development of phenological models with new methods (e.g. deep learning)
Automatic image-based recognition of phenological states
Position II: Flora Incognita for species distribution modeling
Predicting species distribution plays an important role in many ecological applications and nature conservation issues. The PhD project aims to explore whether Flora Incognita data allow predictions of temporal and spatial species distribution patterns. Research topics are:
Integration of Flora Incognita observations into species distribution models at the level of single species and communities
Improving automatic recognition of plant species by integration of additional metadata (e.g. location and time)
Both doctoral projects combine the following key aspects:
analysis of high-dimensional ecological and environmental data with novel predictive methods
data integration across scales (e.g. in-situ and remote sensing satellite observations) and sources (e.g. crowdsourced vs. structured)
application of the latest machine learning methods in ecological modelling
The projects are carried out in close cooperation with the computer scientists at the chair of Prof. Mäder at the TU Ilmenau, with the "Biosphere-Atmosphere Interactions and Experimentation" group at the MPI-BGC (Dr. Mirco Migliavacca), and the "Earth System Data Science Group" (Prof. Miguel Mahecha) at the Leipzig University.
Your Profile:
Master degree (or equivalent) in Biology, Environmental Sciences, Remote Sensing, Computer Sciences, Applied mathematics, or any related field
Very good knowledge in statistics
Very good knowledge of at least one scripting language (e.g. R, Python, Julia)
Good communication skills in English and strong interest to work in an interdisciplinary research team
Our offer:
Become part of an internationally connected and renowned research environment. The conditions of employment, including upgrades and duration follow the rules of the Max Planck Society for the Advancement of Sciences and those of the German civil service. Remuneration follows in accordance with the TVöD public-sector pay grade 13 (65%). The Max Planck Society strives for equality between women and men and for diversity. It aims to increase the proportion of women in those areas in which they are underrepresented. Women are therefore expressly encouraged to apply. We welcome applications from all areas. The Max Planck Society has set itself the goal of employing more severely disabled people. Applications from severely disabled persons are expressly welcome.
Your application:
For further enquiries please contact Dr. Jana Wäldchen (jwald@bgc-jena.mpg.de). Please send your applications including a letter of interest, CV, copies of certificates and the names and contact information of two references by 30th November 2020 with reference number 26/2020 to:
Max Planck Institute for Biogeochemistry
Personalbüro: Kennwort "Flora Incognita"
Hans-Knöll-Straße 10
07745 Jena
Germany
or preferably as a coherent pdf document with the corresponding subject: bewerbung@bgc-jena.mpg.de. Please do not use any application folders, but submit copies only, as your documents will be destroyed in accordance with data protection laws after the application process is completed. We are looking forward to your application!





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...