Skip to main content

PhD positions (m/f/d) | Flora Incognita Max Planck Institute for Biogeochemistry





2 PhD positions (m/f/d) | Flora Incognita Max Planck Institute for Biogeochemistry


Job Offer from October 26, 2020
The Max Planck Institute for Biogeochemistry (MPI-BGC) in Jena is dedicated to interdisciplinary basic research in the field of Earth System Sciences with a focus on climate and ecosystems. The internationally renowned institute, which currently employs around 230 people, will celebrate its 25th anniversary in 2022. Jena is known for its high-tech industry, internationally renowned research facilities and a modern university. But it also has a beautiful natural setting in the green Saale valley with steep limestone slopes. The city of Jena has an active student scene and a diverse cultural life. In our Flora Incognita group we are looking for 2 PhD positions (m/f/d) limited to 3 years.
Background and position description:
Citizen Science approaches combined with latest machine learning are cutting-edge research topics embraced by the research group "Flora Incognita" at the MPI for Biogeochemistry. Our interdisciplinary team including botanists, computer scientists, physics, and media experts is working on transferring traditional plant identification into the digital age. In the long term, the data of the Flora Incognita app will enable us to investigate ecological and conservation issues. When do which species bloom? How much do morphological features of plant species vary? What is the relationship between plant occurrence and climate and land use change? Pressing questions of this kind will be addressed in two PhD projects starting early 2020:
Position I: Flora Incognita data for phenological modeling
Phenology is an important bioindicator of climate change. Flora Incognita provides us with important information about when, for example, plants are flowering. This PhD thesis will investigate to what extent Flora Incognita observations are suitable for phenological monitoring. Specific research topics are:
Comparison of Flora Incognita observations with high-level phenological observations
Integration of Flora Incognita observation data into process-based phenological models
New development of phenological models with new methods (e.g. deep learning)
Automatic image-based recognition of phenological states
Position II: Flora Incognita for species distribution modeling
Predicting species distribution plays an important role in many ecological applications and nature conservation issues. The PhD project aims to explore whether Flora Incognita data allow predictions of temporal and spatial species distribution patterns. Research topics are:
Integration of Flora Incognita observations into species distribution models at the level of single species and communities
Improving automatic recognition of plant species by integration of additional metadata (e.g. location and time)
Both doctoral projects combine the following key aspects:
analysis of high-dimensional ecological and environmental data with novel predictive methods
data integration across scales (e.g. in-situ and remote sensing satellite observations) and sources (e.g. crowdsourced vs. structured)
application of the latest machine learning methods in ecological modelling
The projects are carried out in close cooperation with the computer scientists at the chair of Prof. Mäder at the TU Ilmenau, with the "Biosphere-Atmosphere Interactions and Experimentation" group at the MPI-BGC (Dr. Mirco Migliavacca), and the "Earth System Data Science Group" (Prof. Miguel Mahecha) at the Leipzig University.
Your Profile:
Master degree (or equivalent) in Biology, Environmental Sciences, Remote Sensing, Computer Sciences, Applied mathematics, or any related field
Very good knowledge in statistics
Very good knowledge of at least one scripting language (e.g. R, Python, Julia)
Good communication skills in English and strong interest to work in an interdisciplinary research team
Our offer:
Become part of an internationally connected and renowned research environment. The conditions of employment, including upgrades and duration follow the rules of the Max Planck Society for the Advancement of Sciences and those of the German civil service. Remuneration follows in accordance with the TVöD public-sector pay grade 13 (65%). The Max Planck Society strives for equality between women and men and for diversity. It aims to increase the proportion of women in those areas in which they are underrepresented. Women are therefore expressly encouraged to apply. We welcome applications from all areas. The Max Planck Society has set itself the goal of employing more severely disabled people. Applications from severely disabled persons are expressly welcome.
Your application:
For further enquiries please contact Dr. Jana Wäldchen (jwald@bgc-jena.mpg.de). Please send your applications including a letter of interest, CV, copies of certificates and the names and contact information of two references by 30th November 2020 with reference number 26/2020 to:
Max Planck Institute for Biogeochemistry
Personalbüro: Kennwort "Flora Incognita"
Hans-Knöll-Straße 10
07745 Jena
Germany
or preferably as a coherent pdf document with the corresponding subject: bewerbung@bgc-jena.mpg.de. Please do not use any application folders, but submit copies only, as your documents will be destroyed in accordance with data protection laws after the application process is completed. We are looking forward to your application!





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud