Skip to main content

PhD position in 'Remote sensing of macrozoobenthos in tidal systems' Utrecht University






PhD position in 'Remote sensing of macrozoobenthos in tidal systems' Utrecht University


FunctieAs part of a collaborative project between Utrecht University (UU) and the Royal Netherlands Institute for Sea Research (NIOZ), we seek an enthusiastic candidate for a PhD position within the field of remote sensing of tidal systems. It is a position within the project 'Looking from space to the lower levels of the foodweb in wadden systems', awarded by the Dutch Research Council (NWO).
This project aims to monitor macrozoobenthos with remote sensing in intertidal systems. Tidal flats serve as a nursery area for fish and a staging area for migratory birds, for which availability of macrozoobenthos is crucial for their food security. The status of this low trophic layer of the food-web is considered indicative for the ecosystem quality. Sea-level rise and economic activities like shrimp fisheries and gas extraction interfere with the ecosystem functioning, making (seasonal) monitoring essential. This is complicated by the low accessibility of the flats and high labour intensity of field sampling. Remote sensing can overcome both, but faces its own challenge posed by the poor spectral characteristics of the flats.
This project will search for innovative solutions in the combination of deep-learning techniques and object-based image analysis to identify the nature and dynamics of spatial patterns in benthic fauna.
Your research will include three parts. First, you will apply deep learning techniques to remote sensing images (UAV, Planet, Sentinel2) to optimize information extraction. Second, you will develop algorithms to link (seasonal) field observations on macrozoobenthos and their environmental preferences to the image information. Third, you will analyse time series of satellite images to catch the dynamics of macrozoobenthos. The newly developed non-destructive method allows for monitoring the seasonal and interannual dynamics of macrozoobenthos and the associated food security for fish and birds. 

You will focus on the temperate tidal system in the Dutch Wadden Sea and the tropical system of Barr Al Hikman in Oman. Several field campaigns to sample macrozoobenthos and sediment characteristics are part of your project, both in the Netherlands and in Oman. The campaigns will be supported by the highly-experienced field-technicians from NIOZ and the faculty's Earth Simulation Laboratory (ESL).
The following team will support and supervise you: Dr Elisabeth Addink (daily supervisor, UU), Prof Katja Philippart (1st promotor, UU & NIOZ), Dr Wiebe Nijland (daily supervisor, UU) and Prof Steven de Jong (2nd promotor, UU). Utrecht University will be your home base with numerous stays at NIOZ during the Dutch field campaigns and the lab analyses.

Up to 10% of your time will be dedicated to assisting in the BSc and MSc teaching programmes of the Graduate School of Geosciences. The UU offers you a personalized training programme set up, mutually agreed on recruitment, to strengthen your research profile, adding skills and filling knowledge gaps. It will help you achieve your long-term career objectives as well as supplement and support the project-related research.
📷📷📷
ProfielWe are looking for a creative candidate with:
an MSc degree in Earth Surface Processes, Physical Geography, Ecology, Data Science or a closely related discipline;
knowledge of remote sensing and/or spatial data analysis;
affinity with (ecological) fieldwork;
a driver's license;
proficiency in English, both spoken and written;
demonstrable organisational skills and the ability to work independently;
a strong motivation to (learn how to) communicate your research in journal papers and international conferences;
a keen interest in the outreach of your work outside of the academic setting (e.g. through stakeholder meetings);
an enthusiastic mindset as a team player.
Our department has committed to affirmative action, equal opportunity and the diversity of its workforce, and we explicitly welcome women to apply.📷📷📷
Aanbod
You will be offered a full-time PhD position (1.0 FTE), initially for one year with an extension to a total of four years upon successful assessment in the first year, and with the specific intent that it results in a doctorate within this period. The gross salary starts with €2,395 per month in the first year and increases to €3,061 in the fourth year (scale P according to the Collective Labour Agreement Dutch Universities) per month for a full-time employment. Salaries are supplemented with a holiday bonus of 8% and a year-end bonus of 8.3% per year. In addition, Utrecht University offers excellent secondary conditions, including an attractive retirement scheme, (partly paid) parental leave and flexible employment conditions (multiple choice model). More information about working at Utrecht University can be found here.
Over de organisatie
The Department of Physical Geography has the ambition to excel in research and education on BSc, MSc and PhD level. Its research focuses on processes, patterns and dynamics of Earth's continental and coastal systems, and on the interaction between these processes. This knowledge is essential for the sustainable management of our planet and to guarantee the availability of resources for the next generations. Close cooperation with the department of Coastal Systems (NIOZ Texel) ensures the scientific knowledge and fieldwork expertise on ecology of wadden systems, including that of the Wadden Sea and Barr Al Hikman.A better future for everyone. This ambition motivates our scientists in executing their leading research and inspiring teaching. At Utrecht University, the various disciplines collaborate intensively towards major societal themes. Our focus is on Dynamics of Youth, Institutions for Open Societies, Life Sciences and Sustainability.Utrecht University's Faculty of Geosciences studies the Earth: from the Earth's core to its surface, including man's spatial and material utilisation of the Earth - always with a focus on sustainability and innovation. With 3,400 students (BSc and MSc) and 720 staff, the faculty is a strong and challenging organisation. The Faculty of Geosciences is organised in four Departments: Earth Sciences, Human Geography & Spatial Planning, Physical Geography, and Sustainable Development.
Aanvullende informatieFor more information about this position, please contact:
Dr Elisabeth Addink (Associate Professor), via e.a.addink@uu.nl
Interviews will take place in the week of 16 - 20 November 2020 via online meetings (Skype or MS TEAMS).
Solliciteren
Everyone deserves to feel at home at our university. We welcome employees with a wide variety of backgrounds and perspectives. To apply, please send your curriculum vitae, including a letter of motivation via the 'apply' button below, including names and contact information of 2 referees.
📷📷📷
Reageren uiterlijk25/10/2020






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...