Skip to main content

PhD position in 'Remote sensing of macrozoobenthos in tidal systems' Utrecht University






PhD position in 'Remote sensing of macrozoobenthos in tidal systems' Utrecht University


FunctieAs part of a collaborative project between Utrecht University (UU) and the Royal Netherlands Institute for Sea Research (NIOZ), we seek an enthusiastic candidate for a PhD position within the field of remote sensing of tidal systems. It is a position within the project 'Looking from space to the lower levels of the foodweb in wadden systems', awarded by the Dutch Research Council (NWO).
This project aims to monitor macrozoobenthos with remote sensing in intertidal systems. Tidal flats serve as a nursery area for fish and a staging area for migratory birds, for which availability of macrozoobenthos is crucial for their food security. The status of this low trophic layer of the food-web is considered indicative for the ecosystem quality. Sea-level rise and economic activities like shrimp fisheries and gas extraction interfere with the ecosystem functioning, making (seasonal) monitoring essential. This is complicated by the low accessibility of the flats and high labour intensity of field sampling. Remote sensing can overcome both, but faces its own challenge posed by the poor spectral characteristics of the flats.
This project will search for innovative solutions in the combination of deep-learning techniques and object-based image analysis to identify the nature and dynamics of spatial patterns in benthic fauna.
Your research will include three parts. First, you will apply deep learning techniques to remote sensing images (UAV, Planet, Sentinel2) to optimize information extraction. Second, you will develop algorithms to link (seasonal) field observations on macrozoobenthos and their environmental preferences to the image information. Third, you will analyse time series of satellite images to catch the dynamics of macrozoobenthos. The newly developed non-destructive method allows for monitoring the seasonal and interannual dynamics of macrozoobenthos and the associated food security for fish and birds. 

You will focus on the temperate tidal system in the Dutch Wadden Sea and the tropical system of Barr Al Hikman in Oman. Several field campaigns to sample macrozoobenthos and sediment characteristics are part of your project, both in the Netherlands and in Oman. The campaigns will be supported by the highly-experienced field-technicians from NIOZ and the faculty's Earth Simulation Laboratory (ESL).
The following team will support and supervise you: Dr Elisabeth Addink (daily supervisor, UU), Prof Katja Philippart (1st promotor, UU & NIOZ), Dr Wiebe Nijland (daily supervisor, UU) and Prof Steven de Jong (2nd promotor, UU). Utrecht University will be your home base with numerous stays at NIOZ during the Dutch field campaigns and the lab analyses.

Up to 10% of your time will be dedicated to assisting in the BSc and MSc teaching programmes of the Graduate School of Geosciences. The UU offers you a personalized training programme set up, mutually agreed on recruitment, to strengthen your research profile, adding skills and filling knowledge gaps. It will help you achieve your long-term career objectives as well as supplement and support the project-related research.
📷📷📷
ProfielWe are looking for a creative candidate with:
an MSc degree in Earth Surface Processes, Physical Geography, Ecology, Data Science or a closely related discipline;
knowledge of remote sensing and/or spatial data analysis;
affinity with (ecological) fieldwork;
a driver's license;
proficiency in English, both spoken and written;
demonstrable organisational skills and the ability to work independently;
a strong motivation to (learn how to) communicate your research in journal papers and international conferences;
a keen interest in the outreach of your work outside of the academic setting (e.g. through stakeholder meetings);
an enthusiastic mindset as a team player.
Our department has committed to affirmative action, equal opportunity and the diversity of its workforce, and we explicitly welcome women to apply.📷📷📷
Aanbod
You will be offered a full-time PhD position (1.0 FTE), initially for one year with an extension to a total of four years upon successful assessment in the first year, and with the specific intent that it results in a doctorate within this period. The gross salary starts with €2,395 per month in the first year and increases to €3,061 in the fourth year (scale P according to the Collective Labour Agreement Dutch Universities) per month for a full-time employment. Salaries are supplemented with a holiday bonus of 8% and a year-end bonus of 8.3% per year. In addition, Utrecht University offers excellent secondary conditions, including an attractive retirement scheme, (partly paid) parental leave and flexible employment conditions (multiple choice model). More information about working at Utrecht University can be found here.
Over de organisatie
The Department of Physical Geography has the ambition to excel in research and education on BSc, MSc and PhD level. Its research focuses on processes, patterns and dynamics of Earth's continental and coastal systems, and on the interaction between these processes. This knowledge is essential for the sustainable management of our planet and to guarantee the availability of resources for the next generations. Close cooperation with the department of Coastal Systems (NIOZ Texel) ensures the scientific knowledge and fieldwork expertise on ecology of wadden systems, including that of the Wadden Sea and Barr Al Hikman.A better future for everyone. This ambition motivates our scientists in executing their leading research and inspiring teaching. At Utrecht University, the various disciplines collaborate intensively towards major societal themes. Our focus is on Dynamics of Youth, Institutions for Open Societies, Life Sciences and Sustainability.Utrecht University's Faculty of Geosciences studies the Earth: from the Earth's core to its surface, including man's spatial and material utilisation of the Earth - always with a focus on sustainability and innovation. With 3,400 students (BSc and MSc) and 720 staff, the faculty is a strong and challenging organisation. The Faculty of Geosciences is organised in four Departments: Earth Sciences, Human Geography & Spatial Planning, Physical Geography, and Sustainable Development.
Aanvullende informatieFor more information about this position, please contact:
Dr Elisabeth Addink (Associate Professor), via e.a.addink@uu.nl
Interviews will take place in the week of 16 - 20 November 2020 via online meetings (Skype or MS TEAMS).
Solliciteren
Everyone deserves to feel at home at our university. We welcome employees with a wide variety of backgrounds and perspectives. To apply, please send your curriculum vitae, including a letter of motivation via the 'apply' button below, including names and contact information of 2 referees.
📷📷📷
Reageren uiterlijk25/10/2020






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...