Skip to main content

PhD Position in Deep Learning for Predicting Poverty from Satellite Images Chalmers University of Technology







PhD Position in Deep Learning for Predicting Poverty from Satellite Images Chalmers University of Technology


The data science and AI division at CSE is recruiting a PhD student for a project in Deep Learning for Predicting Poverty from Satellite Images.

The position is advertised within the research project Poverty traps in Africa, funded by FORMAS. FORMAS is a government research council for sustainable development. Its areas of activity include the environment, agricultural sciences, and spatial planning.

About 900 million people—one-third in Africa—live in extreme poverty. Operating on the assumption that life in impoverished communities is fundamentally so different that it can trap people in cycles of deprivation ('poverty traps'), major development agencies have deployed a stream of development projects to break these cycles ('poverty targeting'). However, scholars are currently unable to answer questions such as in what capacity do poverty traps exist; to what extent do these interventions release communities from such traps—as they are held back by a data challenges. There is a lack of geo-temporal poverty data; this project will develop new methods to produce such data. Consequently, the aim of this project is to identify to what extent African communities are trapped in poverty and explain how competing development interventions alter these communities' prospects to free themselves from deprivation. To achieve this aim, the project will (i) develop machine learning algorithms to identify poverty traps from satellite images (e.g. NASA's Landsat mission) between 1980s to 2020; (ii) use these remote sensing derived poverty data to examine how World Bank versus Chinese development programs target and communities; (iii) investigate the extent to which such analysis can be used to draw causal conclusions about the impact of development pograms (iv) using this foundational work, scale up the results from (i) – (iii) to validate them and develop a theory of the varieties of poverty traps and targeting. Lastly, (iv) To produce a statistical package—PovertyMachine—that enables us, and other scholars, to produce poverty estimates from new images (i).

The doctoral student is expected to produce a Ph.D. thesis contributing to primarly satisfying the project's first and third aims: "To develop machine learning and causal inference algorithms to identify poverty levels and poverty traps using satellite images, of African communities over time and space, on a quarterly basis, from the 1980s to 2020."

And secondarily contribututing to satisfying the project's fourth aim: "To produce a statistical package—PovertyMachine—that enables us, and other scholars, to produce poverty estimates from new images (i)."

The project is a collaboration between Chalmers University of Technology and the Department of Sociology, University of Gothenburg. Accordingly, although the student will pursue a PhD in machine learning within computer science and engineering at Chalmers, this person expected to have an interest in social-scientific issues and interdisciplinary research. 

Major responsibilities
Your major responsibilities as a PhD student is to pursue your doctoral studies within the framework of the outlined research project. You will be enrolled in a graduate program in the Department of Computer Science and Engineering. You are expected to develop your own ideas and communicate scientific results orally as well as in written form. In addition, the position will include 20% departmental work, mostly teaching duties in Chalmers' undergraduate and masters-level courses or performing other duties corresponding to 20% of working hours.

Position summary
Full-time temporary employment. The position is limited to a maximum of five years.

Qualifications
To qualify as a PhD student, you must have a master's-level degree, or a four-year bachelor's degree, corresponding to at least 240 higher education credits in a relevant field. The position requires sound verbal and written communication skills in Swedish and English. If Swedish is not your native language, you should be able to teach in Swedish after two years. Chalmers offers Swedish courses.

Chalmers continuously strives to be an attractive employer. Equality and diversity are substantial foundations in all activities at Chalmers.

Our offer to you
Chalmers offers a cultivating and inspiring working environment in the dynamic city of Gothenburg. 
Read more about working at Chalmers and our benefits for employees.

Application procedure
The application should be marked with Ref 20200430 and written in English. The application should be sent electronically and be attached as pdf-files, as below:

CV: (Please name the document: CV, Family name, Ref. number)
• CV
• Other, for example previous employments or leadership qualifications and positions of trust.
• Two references that we can contact.

Personal letter: (Please name the document as: Personal letter, Family name, Ref. number)
1-3 pages where you:
• Introduce yourself
• Describe your previous experience of relevance for the position (e.g. education, thesis work and, if applicable, any other research activities)
• Describe your future goals and future research focus

Other documents:
• Copies of bachelor and/or master's thesis.
• Attested copies and transcripts of completed education, grades and other certificates, e.g. TOEFL test results.

Please use the button at the foot of the page to reach the application form. The files may be compressed (zipped).

Application deadline: 21 October, 2020

For questions, please contact:
Fredrik Johansson, CSE DSAI, fredrik.johansson@chalmers.se






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

Disaster Risk

Disaster Risk