Skip to main content

PhD position (f/m/x) – Remote Sensing of land-atmosphere coupling and hydro-climatic extremes Helmholtz-Zentrum für Umweltforschung - UFZ






PhD position (f/m/x) – Remote Sensing of land-atmosphere coupling and hydro-climatic extremes Helmholtz-Zentrum für Umweltforschung - UFZ


The Helmholtz Centre for Environmental Research (UFZ) with its 1,100 employees has gained an excellent reputation as an international competence centre for environmental sciences. We are part of the largest scientific organisation in Germany, the Helmholtz association. Our mission: Our research seeks to find a balance between social development and the long-term protection of our natural resources.
The newly established Department of Remote Sensing in UFZ in tandem with the Remote Sensing Centre for Earth System Research (RSC4Earth) - a joint initiative of UFZ and the Faculty of Physics and Earth Sciences at Leipzig University - conducts innovative research to advance the understanding of the Earth system via the integration of various remote sensing, data science, and process-oriented modelling techniques. It has extensive research experience in quantifying land surface dynamics from multi-source Earth observations across scales.

Within the PhD framework "MoDEV - Towards novel model-data fusion for understanding environmental variability in space and time from high-resolution remote sensing" we are seeking to appoint a highly motivated candidate for the PhD project "Remote Sensing of soil moisture dynamics".
PhD position (f/m/x) – Remote Sensing of land-atmosphere coupling and hydro-climatic extremes
Working time: 65% (25.35 hours per week), limited to 3 years
Your tasks:
The PhD project aims to systematically investigate the role of land-atmosphere feedback (essential variables) on the occurrence of extreme events (e.g., drought, heat wave) and their interactions with different ecosystems based on satellite observations, field data, and model simulations. Key research questions include:
How do the land-atmosphere feedbacks change during and in the wake of climate extremes over different ecosystems? Will these feedbacks intensity extreme events in addition to large-scale atmospheric circulations (e.g., ENSO, MJO)?
How will ecosystems alter hydrological processes during and after extreme events (e.g., soil moisture, evapotranspiration, vapor pressure deficit)?
How will evapotranspiration respond to soil and atmospheric stress during and after extreme events?
Your profile:
Master degree (or equivalent) in earth system science, remote sensing, meteorology, hydrology, physical geography, environmental sciences, physics, statistics, computer sciences, or a related field
Good programming skills (e.g., Python, Fortran, R, or Matlab)
Experience in terrestrial and atmosphere EO data processing and analysis
Interest in understanding of land-atmosphere feedbacks and their role in climate extremes
Willing to publish results in peer-reviewed journals and present at scientific meetings
Good communication skills in English, and strong interest to work in an interdisciplinary research team
We offer:
Excellent technical facilities which are without parallel
The freedom you need to bridge the difficult gap between basic research and close to being ready for application
Work in interdisciplinary, multinational teams
Excellent links with national and international research networks
Excellent support and optimal subject-specific and general training with our HIGRADE graduate school
Remuneration in accordance with the TVöD public-sector pay grade 13 (65%)





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud