Skip to main content

PhD position (f/m/x) – Climate extremes in tropical ecosystems - an assessment through data and models Helmholtz-Zentrum für Umweltforschung - UFZ






PhD position (f/m/x) – Climate extremes in tropical ecosystems - an assessment through data and models Helmholtz-Zentrum für Umweltforschung - UFZ


The Helmholtz Centre for Environmental Research (UFZ) with its 1,100 employees has gained an excellent reputation as an international competence centre for environmental sciences. We are part of the largest scientific organisation in Germany, the Helmholtz association. Our mission: Our research seeks to find a balance between social development and the long-term protection of our natural resources.
The newly established Department of Remote Sensing in UFZ in tandem with the Remote Sensing Centre for Earth System Research (RSC4Earth.de) - a joint initiative of UFZ and the Faculty of Physics and Earth Sciences at Leipzig University - conducts innovative research to advance the understanding of the Earth system via the integration of various remote sensing, data science, and process-oriented modelling techniques. It has extensive research experience in quantifying land surface dynamics from multi-source Earth observations across scales.
Within the PhD framework "MoDEV - Towards novel model-data fusion for understanding environmental variability in space and time from high-resolution remote sensing" we are seeking to appoint a highly motivated candidate for the PhD project on "Climate extremes in tropical ecosystems - an assessment through data and models".
PhD position (f/m/x) – Climate extremes in tropical ecosystems - an assessment through data and models
Working time: 65% (25.35 hours per week), limited to 3 years
Your tasks:
This PhD project aims to understand the impact of extreme events (e.g. drought, heat wave) on ecosystem dynamics in the tropics. We are interested in understanding the role of land-surface dynamics on different ecosystems based on satellite observations and model simulations. Key research questions include:
What are the spatiotemporal dynamics of climate-induced extreme events in tropical forests and how do their impacts and characteristics change regionally as a function of environmental conditions?
What is the role of species and structural diversity in buffering the impacts of climate extremes; can we describe gradients of resilience within tropical forest ecosystems?
To achieve this goal, optimal data-fusion strategies for merging satellite remote sensing data and models with different spatial and temporal resolutions shall be developed
The PhD project will be supervised by Prof. Miguel Mahecha (UFZ and Leipzig University) and Prof. Andreas Huth (UFZ).
Your profile:
Master degree (or equivalent) in Earth system (data-) science, computer sciences, remote sensing, hydrology, meteorology, applied mathematics, or any related field.
Fluency in one language of scientific computing (e.g., Julia, Python, Fortran, R)
Ideally a solid background in either machine-learning or dynamical modelling
Genuine interest in understanding how the Earth system works!
Willingness to publish results in peer-reviewed journals and present at scientific meetings
Good communication skills in English, and strong interest to work in an interdisciplinary research team
We offer:
Excellent technical facilities which are without parallel
The freedom you need to bridge the difficult gap between basic research and close to being ready for application
Work in interdisciplinary, multinational teams
Excellent links with national and international research networks
Excellent support and optimal subject-specific and general training with our HIGRADE graduate school
Remuneration in accordance with the TVöD public-sector pay grade 13 (65%)





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du choléra dans Paris et le département de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....