Skip to main content

PHD CANDIDATE COVID-19 AND WATER, SANITATION AND HYGIENE IN SCHOOLS. IMPLICATIONS, CHALLENGES, SOLUTIONS University of Twente





PHD CANDIDATE COVID-19 AND WATER, SANITATION AND HYGIENE IN SCHOOLS. IMPLICATIONS, CHALLENGES, SOLUTIONS University of Twente


JOB DESCRIPTION
The global Covid-19 pandemic has revealed the extent to which schools are struggling with the provision of drinking water, sanitation and hygiene (WASH). WHO and UNICEF identified a range of hygiene measures needed to be in place for schools to reopen and operate safely. This PhD research aims to create an understanding of the implications of WASH in schools in developing countries. It will identify geographical, infrastructural and socio-economic barriers related to the necessary improvement of WASH, with a special focus on the availability of water. In addition, it will showcase best WASH practices for safe reopening of schools across the globe and relate them to geography, and identify innovative solutions and their implications to society. This interdisciplinary PhD position has a high relevance to public health, involving both quantitative and qualitative data collection, Earth observation, geospatial analysis, and analysis of primary and secondary data through time.
YOUR PROFILE
You have an MSc degree in public health, environmental engineering or data science.
You have expertise in acquisition and processing of geo-information & remote sensing.
You have good knowledge in statistical data analysis.
You have demonstrated scientific creativity that has preferably resulted in a scientific publication.
You have excellent communication skills and good English language proficiency
You are willing to spend about 6 months performing field work.
You have an affinity with a multi-cultural education environment, excellent work ethics, and commitment to the job
OUR OFFER
We offer a position in an inspiring and challenging multidisciplinary and international environment for a period of four years. Salary and conditions will be in accordance with the Collective Labour Agreement (CAO) for Dutch Universities:
A starting salary of € 2,395.00 in the first year and a salary of € 3,061.00 in the fourth year gross per month;
A holiday allowance of 8% of the gross annual salary and a year-end bonus of 8.3%;
A solid pension scheme;
Minimum of 41 holiday days in case of full-time employment;
Professional and personal development programs;
Costs for moving to Enschede may be reimbursed.
INFORMATION AND APPLICATION
Additional information about this position can be obtained from Dr. Carmen Anthonj (email: c.anthonj@utwente.nl) and Prof. Dr. Justine Blanford (email: j.i.blanford@utwente.nl). You are also invited to visit our GeoHealth website (www.itc.nl/global-impact/geo-health/).
Please submit your application before 15 November 2020 (choose "apply here" below). Your application should include:
a cover letter (maximum 2 pages) including a professional statement with relevant past qualifications/experiences, motivations and future goals.
a one page outline on how to approach this research;
a full Curriculum Vitae, including a list of all courses attended and grades obtained, including a list of names including contact information for three referees;
a short description (maximum 1 page A4) of your MSc research.
ABOUT THE DEPARTMENT
ABOUT THE ORGANIZATION
University of Twente (UT)
University of Twente (UT) has entered the new decade with an ambitious, new vision, mission and strategy. As 'the ultimate people-first university of technology' we are rapidly expanding on our High Tech Human Touch philosophy and the unique role it affords us in society. Everything we do is aimed at maximum impact on people, society and connections through the sustainable utilisation of science and technology. We want to contribute to the development of a fair, digital and sustainable society through our open, inclusive and entrepreneurial attitude. This attitude permeates everything we do and is present in every one of UT's departments and faculties. Building on our rich legacy in merging technical and social sciences, we focus on five distinguishing research domains: Improving healthcare by personalised technologies; Creating intelligent manufacturing systems; Shaping our world with smart materials; Engineering our digital society; and Engineering for a resilient world.
As an employer, University of Twente offers jobs that matter. We equip you as a staff member to shape new opportunities both for yourself and for our society. With us, you will be part of a leading tech university that is changing our world for the better. We offer an open, inclusive and entrepreneurial climate, in which we encourage you to make healthy choices, for example, with our flexible, customisable conditions.




Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...