Skip to main content

PHD CANDIDATE COVID-19 AND WATER, SANITATION AND HYGIENE IN SCHOOLS. IMPLICATIONS, CHALLENGES, SOLUTIONS University of Twente





PHD CANDIDATE COVID-19 AND WATER, SANITATION AND HYGIENE IN SCHOOLS. IMPLICATIONS, CHALLENGES, SOLUTIONS University of Twente


JOB DESCRIPTION
The global Covid-19 pandemic has revealed the extent to which schools are struggling with the provision of drinking water, sanitation and hygiene (WASH). WHO and UNICEF identified a range of hygiene measures needed to be in place for schools to reopen and operate safely. This PhD research aims to create an understanding of the implications of WASH in schools in developing countries. It will identify geographical, infrastructural and socio-economic barriers related to the necessary improvement of WASH, with a special focus on the availability of water. In addition, it will showcase best WASH practices for safe reopening of schools across the globe and relate them to geography, and identify innovative solutions and their implications to society. This interdisciplinary PhD position has a high relevance to public health, involving both quantitative and qualitative data collection, Earth observation, geospatial analysis, and analysis of primary and secondary data through time.
YOUR PROFILE
You have an MSc degree in public health, environmental engineering or data science.
You have expertise in acquisition and processing of geo-information & remote sensing.
You have good knowledge in statistical data analysis.
You have demonstrated scientific creativity that has preferably resulted in a scientific publication.
You have excellent communication skills and good English language proficiency
You are willing to spend about 6 months performing field work.
You have an affinity with a multi-cultural education environment, excellent work ethics, and commitment to the job
OUR OFFER
We offer a position in an inspiring and challenging multidisciplinary and international environment for a period of four years. Salary and conditions will be in accordance with the Collective Labour Agreement (CAO) for Dutch Universities:
A starting salary of € 2,395.00 in the first year and a salary of € 3,061.00 in the fourth year gross per month;
A holiday allowance of 8% of the gross annual salary and a year-end bonus of 8.3%;
A solid pension scheme;
Minimum of 41 holiday days in case of full-time employment;
Professional and personal development programs;
Costs for moving to Enschede may be reimbursed.
INFORMATION AND APPLICATION
Additional information about this position can be obtained from Dr. Carmen Anthonj (email: c.anthonj@utwente.nl) and Prof. Dr. Justine Blanford (email: j.i.blanford@utwente.nl). You are also invited to visit our GeoHealth website (www.itc.nl/global-impact/geo-health/).
Please submit your application before 15 November 2020 (choose "apply here" below). Your application should include:
a cover letter (maximum 2 pages) including a professional statement with relevant past qualifications/experiences, motivations and future goals.
a one page outline on how to approach this research;
a full Curriculum Vitae, including a list of all courses attended and grades obtained, including a list of names including contact information for three referees;
a short description (maximum 1 page A4) of your MSc research.
ABOUT THE DEPARTMENT
ABOUT THE ORGANIZATION
University of Twente (UT)
University of Twente (UT) has entered the new decade with an ambitious, new vision, mission and strategy. As 'the ultimate people-first university of technology' we are rapidly expanding on our High Tech Human Touch philosophy and the unique role it affords us in society. Everything we do is aimed at maximum impact on people, society and connections through the sustainable utilisation of science and technology. We want to contribute to the development of a fair, digital and sustainable society through our open, inclusive and entrepreneurial attitude. This attitude permeates everything we do and is present in every one of UT's departments and faculties. Building on our rich legacy in merging technical and social sciences, we focus on five distinguishing research domains: Improving healthcare by personalised technologies; Creating intelligent manufacturing systems; Shaping our world with smart materials; Engineering our digital society; and Engineering for a resilient world.
As an employer, University of Twente offers jobs that matter. We equip you as a staff member to shape new opportunities both for yourself and for our society. With us, you will be part of a leading tech university that is changing our world for the better. We offer an open, inclusive and entrepreneurial climate, in which we encourage you to make healthy choices, for example, with our flexible, customisable conditions.




Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...