Skip to main content

Graduate Research Associate Positions: Remote Sensing and Data Analytics for Sustainable Agriculture The Ohio State University






Graduate Research Associate Positions: Remote Sensing and Data Analytics for Sustainable Agriculture The Ohio State University

The AgSensing Lab (ASL) in the Department of Food, Agricultural and Biological Engineering at the Ohio State University is recruiting 1 M.S. and 1 PhD students starting in Spring or Fall of 2021 to work in the areas of remote sensing and data analytics for sustainable agriculture.

The ASL focuses on understanding the implications of agricultural practices on ecosystem services (such as crop and soil health) at both field and landscape scales, using remote sensing (i.e., satellite and drone) technologies, ecosystem models and machine learning methods. Some of the current research projects include (1) crop yield assessment at a field scale; (2) mapping of cover crops and the impact on water quality and greenhouse gas emissions, (3) application of drone technologies for precision agriculture, and (4) satellite based monitoring of water quality. ASL also closely collaborates with other research groups, such as ReRout Lab, Lab for Environmental Modeling and Spatial Analysis, BSAL, and Digital Ag at the Ohio State University.

Selected graduate students will work on projects that involve interdisciplinary team of researchers from various disciplines, such as agricultural engineering, computer science and electrical engineering, horticulture and crop science, and entomology. The students will also have an opportunity to work with farmers, crop consultants, and precision agriculture industries. Graduate students are expected to publish research findings in international peer-reviewed journals, present research findings in conferences/meetings, and generate regular project update reports.

The ideal candidates should have the following qualifications and experiences:

· BS or MS degree in agricultural, mechanical, civil, or electrical engineering; environmental science; computer science; or other related disciplines.
· Demonstrated statistical and computer-programming (Python, R, OpenCV, MATLAB, Java, C++, etc.) skills.
· Experience in remote sensing, GIS, ecosystem modeling, precision agriculture technologies.
· Ability to learn/adopt skills and knowledge in solving "real-world" problems.
· Creative and independent research abilities with teamwork spirit.
· Strong oral and written communications skills.

Salary and Benefits: Starting salary/stipend will be competitive. The position will include full benefits as per OSU guidelines, including tuition and health care benefits.

Anticipated Starting Term: Spring 2020 (Open until filled). Applications will be reviewed as received.

No. of Positions: 2

How to Apply: Please email the following materials to Dr. Sami Khanal (khanal.3@osu.edu):

· Cover letter outlining (a) research experience, ideas and interest, (b) motivations to pursue a PhD, (c) and long-term career goals
· Detailed CV
· Academic transcripts (Unofficial copy at this point)
· Unofficial GRE and TOEFL (only for international students) test scores
· List of three references (name, position, institution, email address, and phone number).






Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...