Skip to main content

PhD STUDENT – SAR Remote Sensing of Sea Ice to Detect Ice Break-up Events in the Canadian Arctic University of Manitoba. Fellowship and Scholarship.





PhD STUDENT – SAR Remote Sensing of Sea Ice to Detect Ice Break-up Events in the Canadian Arctic University of Manitoba

We are seeking a motivated student for a Ph.D. thesis project starting in spring/summer or fall 2021 to develop satellite-derived methods to detect sea ice break-up events in the Canadian Arctic. 

Extreme weather events such as storms in the Arctic Ocean during the winter season and accelerated sea ice thinning during spring/summer season impacts sea ice stability and strength, leading to break up events. Winter break up events critically impact the migration activities and subsistence livelihoods of Canadian Arctic communities reliant on sea ice for navigation in coastal zones. Break up events also increase open water areas by amplifying the ice-albedo feedback, facilitating faster marine navigability through ice infested waters. As coastal ice conditions continue to change, web platforms and mobile apps sharing information about dangerous conditions resulting from sea ice break up events are becoming increasingly needed. SIKU, the Indigenous Knowledge social network, currently allows users to share information about dangerous conditions caused by the formation of sea ice cracks and ridges. The addition of break-up events to SIKU's alert system would increase user access to information pertinent to their safety and well-being. 

Presently operational SAR satellite missions such as Canada's Radarsat Constellation Mission (RCM) and the European Space Agency's Sentinel-1 offers high spatial and temporal baseline imagery, delivering high-resolution Interferometric SAR products capable of detecting sea ice movements and break-up events, which can be then be integrated into the SIKU app, as user-friendly risk and hazard avoidance maps, impactful towards the safety and livelihood of indigenous communities. 

The proposed Ph.D. project will focus on developing InSAR techniques and machine learning methods to automatically detect sea ice break up events in various Canadian Arctic communities, from SAR data (e.g. RCM, Sentinel-1, RADASAT-2), and validated using cloud-free optical satellite imagery (e.g. Sentinel-2, Worldview etc) and crowdsourcing. The final SAR-derived sea ice break-up product will be further integrated into the SIKU app, and delivered as user-friendly sea ice hazard maps. 

 The Ph.D. student will be supervised by Prof. Julienne Stroeve and mentored by Drs. Vishnu Nandan and David Jensen. The student will also work with the SIKU app research and technical team. The student's research will be conducted within the Centre for Earth Observation Science (umanitoba.ca/ceos), Department of Environment & Geography at the University of Manitoba, Winnipeg.  

The successful candidate will have an M.Sc. (or equivalent) degree in remote sensing, or related field, with demonstrated experience in working with SAR data, Geographic Information Systems, and strong python/R programming skills. Knowledge/Experience in InSAR techniques and machine learning methods will be considered an asset. The studentship is fully funded over a 4-year period as part of Prof. Stroeve's Canada 150 Chair program.

Initial applications should be sent directly to Prof. Julienne Stroeve (Julienne.Stroeve@umanitoba.ca) and include: two letters of academic reference; a copy of your University transcripts; a letter of intent (1-2 pages) briefly describing your previous research or experience and a short research proposal fitting the above thesis topic, touching on objectives/hypotheses, preferred methods, and scientific significance; and an English Language test score, such as TOEFL or IELTS, if you are an international student with English as a second language. For further information, please contact Dr. Stroeve.

 

Application deadline: Open until filled


....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...