Skip to main content

PhD STUDENT – SAR Remote Sensing of Sea Ice to Detect Ice Break-up Events in the Canadian Arctic University of Manitoba. Fellowship and Scholarship.





PhD STUDENT – SAR Remote Sensing of Sea Ice to Detect Ice Break-up Events in the Canadian Arctic University of Manitoba

We are seeking a motivated student for a Ph.D. thesis project starting in spring/summer or fall 2021 to develop satellite-derived methods to detect sea ice break-up events in the Canadian Arctic. 

Extreme weather events such as storms in the Arctic Ocean during the winter season and accelerated sea ice thinning during spring/summer season impacts sea ice stability and strength, leading to break up events. Winter break up events critically impact the migration activities and subsistence livelihoods of Canadian Arctic communities reliant on sea ice for navigation in coastal zones. Break up events also increase open water areas by amplifying the ice-albedo feedback, facilitating faster marine navigability through ice infested waters. As coastal ice conditions continue to change, web platforms and mobile apps sharing information about dangerous conditions resulting from sea ice break up events are becoming increasingly needed. SIKU, the Indigenous Knowledge social network, currently allows users to share information about dangerous conditions caused by the formation of sea ice cracks and ridges. The addition of break-up events to SIKU's alert system would increase user access to information pertinent to their safety and well-being. 

Presently operational SAR satellite missions such as Canada's Radarsat Constellation Mission (RCM) and the European Space Agency's Sentinel-1 offers high spatial and temporal baseline imagery, delivering high-resolution Interferometric SAR products capable of detecting sea ice movements and break-up events, which can be then be integrated into the SIKU app, as user-friendly risk and hazard avoidance maps, impactful towards the safety and livelihood of indigenous communities. 

The proposed Ph.D. project will focus on developing InSAR techniques and machine learning methods to automatically detect sea ice break up events in various Canadian Arctic communities, from SAR data (e.g. RCM, Sentinel-1, RADASAT-2), and validated using cloud-free optical satellite imagery (e.g. Sentinel-2, Worldview etc) and crowdsourcing. The final SAR-derived sea ice break-up product will be further integrated into the SIKU app, and delivered as user-friendly sea ice hazard maps. 

 The Ph.D. student will be supervised by Prof. Julienne Stroeve and mentored by Drs. Vishnu Nandan and David Jensen. The student will also work with the SIKU app research and technical team. The student's research will be conducted within the Centre for Earth Observation Science (umanitoba.ca/ceos), Department of Environment & Geography at the University of Manitoba, Winnipeg.  

The successful candidate will have an M.Sc. (or equivalent) degree in remote sensing, or related field, with demonstrated experience in working with SAR data, Geographic Information Systems, and strong python/R programming skills. Knowledge/Experience in InSAR techniques and machine learning methods will be considered an asset. The studentship is fully funded over a 4-year period as part of Prof. Stroeve's Canada 150 Chair program.

Initial applications should be sent directly to Prof. Julienne Stroeve (Julienne.Stroeve@umanitoba.ca) and include: two letters of academic reference; a copy of your University transcripts; a letter of intent (1-2 pages) briefly describing your previous research or experience and a short research proposal fitting the above thesis topic, touching on objectives/hypotheses, preferred methods, and scientific significance; and an English Language test score, such as TOEFL or IELTS, if you are an international student with English as a second language. For further information, please contact Dr. Stroeve.

 

Application deadline: Open until filled


....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...