Skip to main content

PhD STUDENT – SAR Remote Sensing of Sea Ice to Detect Ice Break-up Events in the Canadian Arctic University of Manitoba



PhD STUDENT – SAR Remote Sensing of Sea Ice to Detect Ice Break-up Events in the Canadian Arctic University of Manitoba

We are seeking a motivated student for a Ph.D. thesis project starting in spring/summer or fall 2021 to develop satellite-derived methods to detect sea ice break-up events in the Canadian Arctic. 

Extreme weather events such as storms in the Arctic Ocean during the winter season and accelerated sea ice thinning during spring/summer season impacts sea ice stability and strength, leading to break up events. Winter break up events critically impact the migration activities and subsistence livelihoods of Canadian Arctic communities reliant on sea ice for navigation in coastal zones. Break up events also increase open water areas by amplifying the ice-albedo feedback, facilitating faster marine navigability through ice infested waters. As coastal ice conditions continue to change, web platforms and mobile apps sharing information about dangerous conditions resulting from sea ice break up events are becoming increasingly needed. SIKU, the Indigenous Knowledge social network, currently allows users to share information about dangerous conditions caused by the formation of sea ice cracks and ridges. The addition of break-up events to SIKU's alert system would increase user access to information pertinent to their safety and well-being. 

Presently operational SAR satellite missions such as Canada's Radarsat Constellation Mission (RCM) and the European Space Agency's Sentinel-1 offers high spatial and temporal baseline imagery, delivering high-resolution Interferometric SAR products capable of detecting sea ice movements and break-up events, which can be then be integrated into the SIKU app, as user-friendly risk and hazard avoidance maps, impactful towards the safety and livelihood of indigenous communities. 

The proposed Ph.D. project will focus on developing InSAR techniques and machine learning methods to automatically detect sea ice break up events in various Canadian Arctic communities, from SAR data (e.g. RCM, Sentinel-1, RADASAT-2), and validated using cloud-free optical satellite imagery (e.g. Sentinel-2, Worldview etc) and crowdsourcing. The final SAR-derived sea ice break-up product will be further integrated into the SIKU app, and delivered as user-friendly sea ice hazard maps. 

 The Ph.D. student will be supervised by Prof. Julienne Stroeve and mentored by Drs. Vishnu Nandan and David Jensen. The student will also work with the SIKU app research and technical team. The student's research will be conducted within the Centre for Earth Observation Science (umanitoba.ca/ceos), Department of Environment & Geography at the University of Manitoba, Winnipeg.  

The successful candidate will have an M.Sc. (or equivalent) degree in remote sensing, or related field, with demonstrated experience in working with SAR data, Geographic Information Systems, and strong python/R programming skills. Knowledge/Experience in InSAR techniques and machine learning methods will be considered an asset. The studentship is fully funded over a 4-year period as part of Prof. Stroeve's Canada 150 Chair program.

Initial applications should be sent directly to Prof. Julienne Stroeve (Julienne.Stroeve@umanitoba.ca) and include: two letters of academic reference; a copy of your University transcripts; a letter of intent (1-2 pages) briefly describing your previous research or experience and a short research proposal fitting the above thesis topic, touching on objectives/hypotheses, preferred methods, and scientific significance; and an English Language test score, such as TOEFL or IELTS, if you are an international student with English as a second language. For further information, please contact Dr. Stroeve.

 

Application deadline: Open until filled



....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...