Skip to main content

Graduate positions at Boise State University






Graduate positions at Boise State University

The cryosphere research program at Boise State University is looking for 3 graduate students to conduct research on mountain snow and glaciers as part of an interdisciplinary NASA EPSCoR program that will begin winter 2021. The students will work closely with several faculty at Boise State as well as faculty at the University of Idaho to quantify and model variation in snow accumulation and melt in mountainous and glacierized terrain. We seek students that will align with one of three potential subject areas:

Quantify the impact of topography and vegetation on the distribution of seasonal snow, and its impact on snowmelt timing.

Improve empirical and numerical models of snow accumulation and snow and ice melt in mountain regions using ICESat-2 observations.

Develop a workflow to design sparse, efficient in-situ observational networks to minimize uncertainties in basin-scale meltwater flux estimates from remotely sensed and modeled data.

Additional funded graduate projects focused on the application of a variety of geophysical methods to measure mountain snowpack and associated hazards will soon be available as well. Details on these additional positions will be posted at https://www.boisestate.edu/earth-cryogars/.

We seek students with broad backgrounds to engage in collaborative, interdisciplinary research while completing degrees in Geophysics, Geoscience, Hydrology, or Scientific Computing. The professional development of students will be supported through a variety of research and engagement activities. These include opportunities to design and conduct field investigations in Idaho and Alaska and gain formal and informal training in science education. The interdisciplinary scientists trained through participation in this project will be provided with the resources and connections needed to meet their professional goals. 

Three year fully-funded student positions are available starting as early as January 2021, so applications will be evaluated as they are received. We welcome and encourage applicants with backgrounds historically underrepresented in STEM and Earth Sciences. Note that graduate programs in the Department of Geosciences at Boise State do not require or consider GRE scores in admissions. Check out the Boise State Graduate College, as well as the Department of Geosciences and PhD in Computing program websites, for information about the university and graduate degree programs. 

Please contact Dr. Ellyn Enderlin (ellynenderlin@boisestate.edu) for more information about the available positions and/or to set-up an informal remote interview. Additional information about the Enderlin Glaciology Group can also be found at https://sites.google.com/site/ellynenderlin/home.

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...