Skip to main content

Graduate positions at Boise State University






Graduate positions at Boise State University

The cryosphere research program at Boise State University is looking for 3 graduate students to conduct research on mountain snow and glaciers as part of an interdisciplinary NASA EPSCoR program that will begin winter 2021. The students will work closely with several faculty at Boise State as well as faculty at the University of Idaho to quantify and model variation in snow accumulation and melt in mountainous and glacierized terrain. We seek students that will align with one of three potential subject areas:

Quantify the impact of topography and vegetation on the distribution of seasonal snow, and its impact on snowmelt timing.

Improve empirical and numerical models of snow accumulation and snow and ice melt in mountain regions using ICESat-2 observations.

Develop a workflow to design sparse, efficient in-situ observational networks to minimize uncertainties in basin-scale meltwater flux estimates from remotely sensed and modeled data.

Additional funded graduate projects focused on the application of a variety of geophysical methods to measure mountain snowpack and associated hazards will soon be available as well. Details on these additional positions will be posted at https://www.boisestate.edu/earth-cryogars/.

We seek students with broad backgrounds to engage in collaborative, interdisciplinary research while completing degrees in Geophysics, Geoscience, Hydrology, or Scientific Computing. The professional development of students will be supported through a variety of research and engagement activities. These include opportunities to design and conduct field investigations in Idaho and Alaska and gain formal and informal training in science education. The interdisciplinary scientists trained through participation in this project will be provided with the resources and connections needed to meet their professional goals. 

Three year fully-funded student positions are available starting as early as January 2021, so applications will be evaluated as they are received. We welcome and encourage applicants with backgrounds historically underrepresented in STEM and Earth Sciences. Note that graduate programs in the Department of Geosciences at Boise State do not require or consider GRE scores in admissions. Check out the Boise State Graduate College, as well as the Department of Geosciences and PhD in Computing program websites, for information about the university and graduate degree programs. 

Please contact Dr. Ellyn Enderlin (ellynenderlin@boisestate.edu) for more information about the available positions and/or to set-up an informal remote interview. Additional information about the Enderlin Glaciology Group can also be found at https://sites.google.com/site/ellynenderlin/home.

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.