Skip to main content

AICTE has approved for the inclusion of Geospatial subject in GATE and NET examination







Ministry of Science & Technology
AICTE approves inclusion of Geospatial as a subject in GATE and NET exam
Posted On: 23 SEP 2020 2:07PM by PIB Delhi
Students competing for the popular National Eligibility Test (NET) for Junior Research Fellowship (JRF) and lectureship in Indian universities and colleges, including IITs and NITs and Graduate Aptitude Test in Engineering (GATE) for JRF in CSIR laboratories, can now opt for Geospatial as a subject.

 

The All India Council of Technical Education (AICTE) has approved for the inclusion of Geospatial subject in GATE and NET examination on the recommendation of the National Geospatial Task Force Report 2013 under the Chairmanship of former ISRO Chairman, Dr. K. Kasturirangan.

 

Department of Science and Technology (DST) as an organisation and many professionals have highlighted the need for Geospatial subject especially in GATE and NET examination at different forums.

 

Dr. K. C. Tiwari (Retd. Col), Department of Science and Technology's Geospatial Chair Professor, Centre of Geoinformatics, Delhi Technological University, had made sincere efforts for inclusion of Geospatial Subject in the GATE and NET examination, and the decision was an outcome of DST's insistence and his hard work.

 

This will benefit the increasing number of students who are taking up geospatial as a subject at different levels and help in the evolution of Geospatial Ecosystem in the country

 

The Natural Resources Data Management System (NRDMS) under DST is an interdisciplinary research programme which promoted R&D in emerging areas of geospatial science, technology, and its applications to area-specific problems. Over the years, it has successfully demonstrated utilities of geospatial technologies in decision making and developed capacity for geospatial data and information management at state, district, and local levels at pilot scale.

 

Now, it is evolving into National Geospatial Programmeforcatalyzing the national geospatial ecosystem and promoting geospatial science and technology solutions, capacity building, entrepreneurship, and international cooperation for sustainable sociology-economic development at all levels of governance and also stressing on including geospatial subject at different levels.

 

"Geospatial science and technology is a rapidly evolving subject that forms the backbone of a plethora of planning, development and governance activities with unprecedented opportunities both in the government and private sectors. Swamitva, a recent scheme launched by the Prime Minister is a good example to map rural inhabited lands using drones and latest survey methods. The scheme among other things will streamline planning, revenue collection and property rights and thus have a huge positive impact on securing loans by the owners and dispute resolution related to properties," said Prof Ashutosh Sharma, Secretary, DST.

 

 

*****

NB/KGS/(DST Media Cell)





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...