Skip to main content

AICTE has approved for the inclusion of Geospatial subject in GATE and NET examination







Ministry of Science & Technology
AICTE approves inclusion of Geospatial as a subject in GATE and NET exam
Posted On: 23 SEP 2020 2:07PM by PIB Delhi
Students competing for the popular National Eligibility Test (NET) for Junior Research Fellowship (JRF) and lectureship in Indian universities and colleges, including IITs and NITs and Graduate Aptitude Test in Engineering (GATE) for JRF in CSIR laboratories, can now opt for Geospatial as a subject.

 

The All India Council of Technical Education (AICTE) has approved for the inclusion of Geospatial subject in GATE and NET examination on the recommendation of the National Geospatial Task Force Report 2013 under the Chairmanship of former ISRO Chairman, Dr. K. Kasturirangan.

 

Department of Science and Technology (DST) as an organisation and many professionals have highlighted the need for Geospatial subject especially in GATE and NET examination at different forums.

 

Dr. K. C. Tiwari (Retd. Col), Department of Science and Technology's Geospatial Chair Professor, Centre of Geoinformatics, Delhi Technological University, had made sincere efforts for inclusion of Geospatial Subject in the GATE and NET examination, and the decision was an outcome of DST's insistence and his hard work.

 

This will benefit the increasing number of students who are taking up geospatial as a subject at different levels and help in the evolution of Geospatial Ecosystem in the country

 

The Natural Resources Data Management System (NRDMS) under DST is an interdisciplinary research programme which promoted R&D in emerging areas of geospatial science, technology, and its applications to area-specific problems. Over the years, it has successfully demonstrated utilities of geospatial technologies in decision making and developed capacity for geospatial data and information management at state, district, and local levels at pilot scale.

 

Now, it is evolving into National Geospatial Programmeforcatalyzing the national geospatial ecosystem and promoting geospatial science and technology solutions, capacity building, entrepreneurship, and international cooperation for sustainable sociology-economic development at all levels of governance and also stressing on including geospatial subject at different levels.

 

"Geospatial science and technology is a rapidly evolving subject that forms the backbone of a plethora of planning, development and governance activities with unprecedented opportunities both in the government and private sectors. Swamitva, a recent scheme launched by the Prime Minister is a good example to map rural inhabited lands using drones and latest survey methods. The scheme among other things will streamline planning, revenue collection and property rights and thus have a huge positive impact on securing loans by the owners and dispute resolution related to properties," said Prof Ashutosh Sharma, Secretary, DST.

 

 

*****

NB/KGS/(DST Media Cell)





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://www.facebook.com/Applied.Geography
http://geogisgeo.blogspot.com

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...