Skip to main content

PhD position in Radar remote sensing TU Wien.





PhD position in Radar remote sensing TU Wien

The research group Microwave Remote Sensing of the Department of Geodesy and Geoinformation of TU Wien is seeking a motivated

Project assistant in microwave remote sensing (f/m)

Reliable soil moisture and vegetation state estimates are an essential source of data for various research fields and applications, such as climate modelling, agricultural monitoring and flood and drought prediction. The Microwave Remote Sensing group conducts theoretical and applied research to improve the retrieval of soil moisture and land surface characteristics from active microwave remote sensing observations and use these to better understand land surface processes and interactions at different temporal and spatial scales. The Microwave Remote Sensing group is at the forefront of microwave remote sensing of land surface variables and consists of PhD's, Post-Doc's and senior scientists led by Prof. Dr. Wolfgang Wagner.

To support the research work of our team, we are looking for a Project Assistant with a strong technological interest to support our activities in the field of microwave remote sensing of soil moisture and vegetation. The selected candidate will be responsible for improving existing soil moisture and vegetation algorithms especially focusing on high resolution retrievals from Sentinel-1 backscatter observations. Working with high resolution Sentinel-1 data includes big data analysis and working in a high-performance computing environment.

Your responsibilities:

Developing scientific algorithms in the fields of radar remote sensing
Contribution in software development using object-oriented programming language
Prototyping, implementing, and testing of processing chains and generation of value-added products
Writing technical documents, project reports and scientific journal papers

Your skills

Master degree in earth sciences, environmental sciences, information sciences, geodesy, geoinformation sciences, physics, or similar
Experience in (microwave) remote sensing and derivation of geophysical parameters from remote sensing observations (e.g. soil moisture, water bodies, vegetation, snow and ice, …)
Excellent programming skills (preferably Python)
Strong analytical and technical skills and problem-solving capability
Good written and spoken communication skills in English

We Offer

The opportunity to work in an innovative, dynamic and successful team
A stimulating and friendly working environment at the department
Possibility to enrol in the PhD program of TU Wien and further develop and learn
Freedom to discuss and implement your own ideas
Flexible working hours
Workplace close to city centre, metro and main train station and ample outdoor opportunities in the vicinity of Vienna

The salary for this position is based on the Austrian regulations for university staff. The monthly minimum gross salary ranges between € 1.706,90 (MSc level) for a 25 h/week employment and € 2.731,00 for a 40h/week employment. The monthly salary is paid 14 times per year.

If this job opportunity fits your career development plans, we are looking forward to receiving your application in English (cover letter, CV, relevant publications and references) and in one single PDF file via e-mail to rs-sek@geo.tuwien.ac.at

Candidate selection will start on September 24th, 2020 and will continue until a suitable candidate is found. TU Wien will not refund any cost occurred in the course of an application.

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...