Skip to main content

PhD position in Radar remote sensing TU Wien.





PhD position in Radar remote sensing TU Wien

The research group Microwave Remote Sensing of the Department of Geodesy and Geoinformation of TU Wien is seeking a motivated

Project assistant in microwave remote sensing (f/m)

Reliable soil moisture and vegetation state estimates are an essential source of data for various research fields and applications, such as climate modelling, agricultural monitoring and flood and drought prediction. The Microwave Remote Sensing group conducts theoretical and applied research to improve the retrieval of soil moisture and land surface characteristics from active microwave remote sensing observations and use these to better understand land surface processes and interactions at different temporal and spatial scales. The Microwave Remote Sensing group is at the forefront of microwave remote sensing of land surface variables and consists of PhD's, Post-Doc's and senior scientists led by Prof. Dr. Wolfgang Wagner.

To support the research work of our team, we are looking for a Project Assistant with a strong technological interest to support our activities in the field of microwave remote sensing of soil moisture and vegetation. The selected candidate will be responsible for improving existing soil moisture and vegetation algorithms especially focusing on high resolution retrievals from Sentinel-1 backscatter observations. Working with high resolution Sentinel-1 data includes big data analysis and working in a high-performance computing environment.

Your responsibilities:

Developing scientific algorithms in the fields of radar remote sensing
Contribution in software development using object-oriented programming language
Prototyping, implementing, and testing of processing chains and generation of value-added products
Writing technical documents, project reports and scientific journal papers

Your skills

Master degree in earth sciences, environmental sciences, information sciences, geodesy, geoinformation sciences, physics, or similar
Experience in (microwave) remote sensing and derivation of geophysical parameters from remote sensing observations (e.g. soil moisture, water bodies, vegetation, snow and ice, …)
Excellent programming skills (preferably Python)
Strong analytical and technical skills and problem-solving capability
Good written and spoken communication skills in English

We Offer

The opportunity to work in an innovative, dynamic and successful team
A stimulating and friendly working environment at the department
Possibility to enrol in the PhD program of TU Wien and further develop and learn
Freedom to discuss and implement your own ideas
Flexible working hours
Workplace close to city centre, metro and main train station and ample outdoor opportunities in the vicinity of Vienna

The salary for this position is based on the Austrian regulations for university staff. The monthly minimum gross salary ranges between € 1.706,90 (MSc level) for a 25 h/week employment and € 2.731,00 for a 40h/week employment. The monthly salary is paid 14 times per year.

If this job opportunity fits your career development plans, we are looking forward to receiving your application in English (cover letter, CV, relevant publications and references) and in one single PDF file via e-mail to rs-sek@geo.tuwien.ac.at

Candidate selection will start on September 24th, 2020 and will continue until a suitable candidate is found. TU Wien will not refund any cost occurred in the course of an application.

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...