Skip to main content

PhD position in Radar remote sensing TU Wien.





PhD position in Radar remote sensing TU Wien

The research group Microwave Remote Sensing of the Department of Geodesy and Geoinformation of TU Wien is seeking a motivated

Project assistant in microwave remote sensing (f/m)

Reliable soil moisture and vegetation state estimates are an essential source of data for various research fields and applications, such as climate modelling, agricultural monitoring and flood and drought prediction. The Microwave Remote Sensing group conducts theoretical and applied research to improve the retrieval of soil moisture and land surface characteristics from active microwave remote sensing observations and use these to better understand land surface processes and interactions at different temporal and spatial scales. The Microwave Remote Sensing group is at the forefront of microwave remote sensing of land surface variables and consists of PhD's, Post-Doc's and senior scientists led by Prof. Dr. Wolfgang Wagner.

To support the research work of our team, we are looking for a Project Assistant with a strong technological interest to support our activities in the field of microwave remote sensing of soil moisture and vegetation. The selected candidate will be responsible for improving existing soil moisture and vegetation algorithms especially focusing on high resolution retrievals from Sentinel-1 backscatter observations. Working with high resolution Sentinel-1 data includes big data analysis and working in a high-performance computing environment.

Your responsibilities:

Developing scientific algorithms in the fields of radar remote sensing
Contribution in software development using object-oriented programming language
Prototyping, implementing, and testing of processing chains and generation of value-added products
Writing technical documents, project reports and scientific journal papers

Your skills

Master degree in earth sciences, environmental sciences, information sciences, geodesy, geoinformation sciences, physics, or similar
Experience in (microwave) remote sensing and derivation of geophysical parameters from remote sensing observations (e.g. soil moisture, water bodies, vegetation, snow and ice, …)
Excellent programming skills (preferably Python)
Strong analytical and technical skills and problem-solving capability
Good written and spoken communication skills in English

We Offer

The opportunity to work in an innovative, dynamic and successful team
A stimulating and friendly working environment at the department
Possibility to enrol in the PhD program of TU Wien and further develop and learn
Freedom to discuss and implement your own ideas
Flexible working hours
Workplace close to city centre, metro and main train station and ample outdoor opportunities in the vicinity of Vienna

The salary for this position is based on the Austrian regulations for university staff. The monthly minimum gross salary ranges between € 1.706,90 (MSc level) for a 25 h/week employment and € 2.731,00 for a 40h/week employment. The monthly salary is paid 14 times per year.

If this job opportunity fits your career development plans, we are looking forward to receiving your application in English (cover letter, CV, relevant publications and references) and in one single PDF file via e-mail to rs-sek@geo.tuwien.ac.at

Candidate selection will start on September 24th, 2020 and will continue until a suitable candidate is found. TU Wien will not refund any cost occurred in the course of an application.

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...