Skip to main content

PhD position in Radar remote sensing TU Wien.





PhD position in Radar remote sensing TU Wien

The research group Microwave Remote Sensing of the Department of Geodesy and Geoinformation of TU Wien is seeking a motivated

Project assistant in microwave remote sensing (f/m)

Reliable soil moisture and vegetation state estimates are an essential source of data for various research fields and applications, such as climate modelling, agricultural monitoring and flood and drought prediction. The Microwave Remote Sensing group conducts theoretical and applied research to improve the retrieval of soil moisture and land surface characteristics from active microwave remote sensing observations and use these to better understand land surface processes and interactions at different temporal and spatial scales. The Microwave Remote Sensing group is at the forefront of microwave remote sensing of land surface variables and consists of PhD's, Post-Doc's and senior scientists led by Prof. Dr. Wolfgang Wagner.

To support the research work of our team, we are looking for a Project Assistant with a strong technological interest to support our activities in the field of microwave remote sensing of soil moisture and vegetation. The selected candidate will be responsible for improving existing soil moisture and vegetation algorithms especially focusing on high resolution retrievals from Sentinel-1 backscatter observations. Working with high resolution Sentinel-1 data includes big data analysis and working in a high-performance computing environment.

Your responsibilities:

Developing scientific algorithms in the fields of radar remote sensing
Contribution in software development using object-oriented programming language
Prototyping, implementing, and testing of processing chains and generation of value-added products
Writing technical documents, project reports and scientific journal papers

Your skills

Master degree in earth sciences, environmental sciences, information sciences, geodesy, geoinformation sciences, physics, or similar
Experience in (microwave) remote sensing and derivation of geophysical parameters from remote sensing observations (e.g. soil moisture, water bodies, vegetation, snow and ice, …)
Excellent programming skills (preferably Python)
Strong analytical and technical skills and problem-solving capability
Good written and spoken communication skills in English

We Offer

The opportunity to work in an innovative, dynamic and successful team
A stimulating and friendly working environment at the department
Possibility to enrol in the PhD program of TU Wien and further develop and learn
Freedom to discuss and implement your own ideas
Flexible working hours
Workplace close to city centre, metro and main train station and ample outdoor opportunities in the vicinity of Vienna

The salary for this position is based on the Austrian regulations for university staff. The monthly minimum gross salary ranges between € 1.706,90 (MSc level) for a 25 h/week employment and € 2.731,00 for a 40h/week employment. The monthly salary is paid 14 times per year.

If this job opportunity fits your career development plans, we are looking forward to receiving your application in English (cover letter, CV, relevant publications and references) and in one single PDF file via e-mail to rs-sek@geo.tuwien.ac.at

Candidate selection will start on September 24th, 2020 and will continue until a suitable candidate is found. TU Wien will not refund any cost occurred in the course of an application.

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...