Skip to main content

PhD position in Radar remote sensing TU Wien.





PhD position in Radar remote sensing TU Wien

The research group Microwave Remote Sensing of the Department of Geodesy and Geoinformation of TU Wien is seeking a motivated

Project assistant in microwave remote sensing (f/m)

Reliable soil moisture and vegetation state estimates are an essential source of data for various research fields and applications, such as climate modelling, agricultural monitoring and flood and drought prediction. The Microwave Remote Sensing group conducts theoretical and applied research to improve the retrieval of soil moisture and land surface characteristics from active microwave remote sensing observations and use these to better understand land surface processes and interactions at different temporal and spatial scales. The Microwave Remote Sensing group is at the forefront of microwave remote sensing of land surface variables and consists of PhD's, Post-Doc's and senior scientists led by Prof. Dr. Wolfgang Wagner.

To support the research work of our team, we are looking for a Project Assistant with a strong technological interest to support our activities in the field of microwave remote sensing of soil moisture and vegetation. The selected candidate will be responsible for improving existing soil moisture and vegetation algorithms especially focusing on high resolution retrievals from Sentinel-1 backscatter observations. Working with high resolution Sentinel-1 data includes big data analysis and working in a high-performance computing environment.

Your responsibilities:

Developing scientific algorithms in the fields of radar remote sensing
Contribution in software development using object-oriented programming language
Prototyping, implementing, and testing of processing chains and generation of value-added products
Writing technical documents, project reports and scientific journal papers

Your skills

Master degree in earth sciences, environmental sciences, information sciences, geodesy, geoinformation sciences, physics, or similar
Experience in (microwave) remote sensing and derivation of geophysical parameters from remote sensing observations (e.g. soil moisture, water bodies, vegetation, snow and ice, …)
Excellent programming skills (preferably Python)
Strong analytical and technical skills and problem-solving capability
Good written and spoken communication skills in English

We Offer

The opportunity to work in an innovative, dynamic and successful team
A stimulating and friendly working environment at the department
Possibility to enrol in the PhD program of TU Wien and further develop and learn
Freedom to discuss and implement your own ideas
Flexible working hours
Workplace close to city centre, metro and main train station and ample outdoor opportunities in the vicinity of Vienna

The salary for this position is based on the Austrian regulations for university staff. The monthly minimum gross salary ranges between € 1.706,90 (MSc level) for a 25 h/week employment and € 2.731,00 for a 40h/week employment. The monthly salary is paid 14 times per year.

If this job opportunity fits your career development plans, we are looking forward to receiving your application in English (cover letter, CV, relevant publications and references) and in one single PDF file via e-mail to rs-sek@geo.tuwien.ac.at

Candidate selection will start on September 24th, 2020 and will continue until a suitable candidate is found. TU Wien will not refund any cost occurred in the course of an application.

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud