Skip to main content

Sunder Pichai-Cockroach Theory



Sunder Pichai-Cockroach Theory
::::

A beautiful speech by Sundar Pichai - an IIT-MIT Alumnus and Global Head Google Chrome:

The cockroach theory for self development

At a restaurant, a cockroach suddenly flew from somewhere and sat on a lady.

She started screaming out of fear.

With a panic stricken face and trembling voice, she started jumping, with both her hands desperately trying to get rid of the cockroach.

Her reaction was contagious, as everyone in her group also got panicky.

The lady finally managed to push the cockroach away but ...it landed on another lady in the group.

Now, it was the turn of the other lady in the group to continue the drama.

The waiter rushed forward to their rescue.

In the relay of throwing, the cockroach next fell upon the waiter.

The waiter stood firm, composed himself and observed the behavior of the cockroach on his shirt.

When he was confident enough, he grabbed it with his fingers and threw it out of the restaurant.

Sipping my coffee and watching the amusement, the antenna of my mind picked up a few thoughts and started wondering, was the cockroach responsible for their histrionic behavior?

If so, then why was the waiter not disturbed?

He handled it near to perfection, without any chaos.

It is not the cockroach, but the inability of those people to handle the disturbance caused by the cockroach, that disturbed the ladies.

I realized that, it is not the shouting of my father or my boss or my wife that disturbs me, but it's my inability to handle the disturbances caused by their shouting that disturbs me.

It's not the traffic jams on the road that disturbs me, but my inability to handle the disturbance caused by the traffic jam that disturbs me.

More than the problem, it's my reaction to the problem that creates chaos in my life.

Lessons learnt from the story:

I understood, I should not react in life.
I should always respond.

The women reacted, whereas the waiter responded.

Reactions are always instinctive whereas responses are always well thought of.

A beautiful way to understand............LIFE.

Person who is HAPPY is not because Everything is RIGHT in his Life..

He is HAPPY because his Attitude towards Everything in his Life is Right..!!!
🌟🌊Dont react but proact or respond.



....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...