Skip to main content

Scientist in optical remote sensing of vegetation Forschungszentrum Jülich





Scientist in optical remote sensing of vegetation Forschungszentrum Jülich

The Plant Sciences Subinstitute of the Institute of Bio- and Geosciences (IBG) investigates the dynamics of plant processes and the interaction of plants with the environment. Plant science at Forschungszentrum Jülich plays a leading role at national and international level in the field of plant phenotyping, i.e. in the quantitative and non-invasive recording of structural and functional properties of plants important for agricultural and horticultural plant breeding. In this context, we are developing new sensors and measurement concepts and integrate them into semi- and fully automated systems. One focus of the subinstitute is the use of optical sensors to promote the automated measurement of plant traits under field conditions. Ground-based measurements are complemented by UAV, aircraft and satellite-based remote sensing approaches. Particular focus is on the development of novel non-invasive measurement approaches that include, multi- and hyperspectral imaging as well as different fluorescence retrieval techniques.
We are looking to recruit a
Scientist in optical remote sensing of vegetation
Your Job:
Focus of the research will be on exploiting hyper- and multispectral UAV data from cassava and other crops to derive structural and functional plant properties
Contribution to flight and campaign planning using rotary and fixed-wing unmanned platforms (UAVs) in Nigeria, Taiwan and Germany
Integration of multi- and hyperspectral sensors into existing UAV platforms
Measuring canopy traits in cassava plants in a project collaboration funded by the Bill and Melinda Gates Foundation
Development and refinement of algorithms for the preprocessing, atmospheric correction and georectification of spectrally resolved UAV data
Registration of optical reflectance data with experimental plot set-ups using GIS layers
Retrieval of canopy height models using custom based codes for data processing
Calculation of classical vegetation traits by exploiting the information content of the optical sensors
Radiative transfer inversion of leaf and canopy models to derive structural and functional vegetation traits from the combination of UAV based imaging data and other information sources, such as meteorological and ground based data
Interpretation of the results, correlation of remote sensing data with ground based plant traits and the integration within different synergistic projects
Presentation of the results at scientific conferences and within project reports
Writing of scientific papers in this field by taking advantage of the large body of research data that are available in the group
Contribution to project proposals in this research field
Contribution to supervision of Bachelor, Master and PhD students
Your Profile:
A university degree in Remote Sensing, Geophysics, Plant Biology, Agriculture or a natural scientific discipline with relevant and proven experience in the field of activity
Sound background in the use of UAVs and other unmanned aerial vehicles in research and agricultural practice
Experience in the processing of UAV image data using Agisoft Metashape or Pix4D
Sound background and proven expertise in processing and analyzing multispectral data
Profound knowledge in the field of atmospheric and geometric correction methods applied to ground-based, airborne and satellite data
Wide experience in interpretation and retrieval of vegetation traits from multispectral imagery
Special interest in retrieving and interpreting spectrally resolved UAV data from agricultural settings
Experience with programming languages and software that are used for multi-/hyperspectral image processing, e.g. ENVI/IDL, Python, R, Matlab etc.
Willingness and interest to work in Developing Countries
Ability to work in the field, partly also in remote locations outside of Germany, in specific in Nigeria and Taiwain
Driver license obligatory, already existing licenses to operate UAV platforms are a benefit
Our Offer:
Exciting working environment on an attractive research campus with excellent infrastructure, located between the cities of Cologne, Düsseldorf, and Aachen
Possibility to develop own scientific profile in the emerging topic of ‚remote sensing of vegetation traits using unmanned aerial vehicles'
Integration in a world-leading research group in this field with a stimulating scientific environment
Attendance of national and international conferences and workshops
Possibility for further scientific and technical training through international experts
Flexible working hours and various opportunities to reconcile work and private life
Position initially limited to three years, with the possibility of a longer-term perspective
The position can also be filled as a part-time position; flexible working time models between 50-100% are possible
Salary and social benefits in conformity with the provisions of the Collective Agreement for the Civil Service (TVöD)
Forschungszentrum Jülich promotes equal opportunities and diversity in its employment relations.
We also welcome applications from disabled persons.





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud