Skip to main content

Scientist in optical remote sensing of vegetation Forschungszentrum Jülich





Scientist in optical remote sensing of vegetation Forschungszentrum Jülich

The Plant Sciences Subinstitute of the Institute of Bio- and Geosciences (IBG) investigates the dynamics of plant processes and the interaction of plants with the environment. Plant science at Forschungszentrum Jülich plays a leading role at national and international level in the field of plant phenotyping, i.e. in the quantitative and non-invasive recording of structural and functional properties of plants important for agricultural and horticultural plant breeding. In this context, we are developing new sensors and measurement concepts and integrate them into semi- and fully automated systems. One focus of the subinstitute is the use of optical sensors to promote the automated measurement of plant traits under field conditions. Ground-based measurements are complemented by UAV, aircraft and satellite-based remote sensing approaches. Particular focus is on the development of novel non-invasive measurement approaches that include, multi- and hyperspectral imaging as well as different fluorescence retrieval techniques.
We are looking to recruit a
Scientist in optical remote sensing of vegetation
Your Job:
Focus of the research will be on exploiting hyper- and multispectral UAV data from cassava and other crops to derive structural and functional plant properties
Contribution to flight and campaign planning using rotary and fixed-wing unmanned platforms (UAVs) in Nigeria, Taiwan and Germany
Integration of multi- and hyperspectral sensors into existing UAV platforms
Measuring canopy traits in cassava plants in a project collaboration funded by the Bill and Melinda Gates Foundation
Development and refinement of algorithms for the preprocessing, atmospheric correction and georectification of spectrally resolved UAV data
Registration of optical reflectance data with experimental plot set-ups using GIS layers
Retrieval of canopy height models using custom based codes for data processing
Calculation of classical vegetation traits by exploiting the information content of the optical sensors
Radiative transfer inversion of leaf and canopy models to derive structural and functional vegetation traits from the combination of UAV based imaging data and other information sources, such as meteorological and ground based data
Interpretation of the results, correlation of remote sensing data with ground based plant traits and the integration within different synergistic projects
Presentation of the results at scientific conferences and within project reports
Writing of scientific papers in this field by taking advantage of the large body of research data that are available in the group
Contribution to project proposals in this research field
Contribution to supervision of Bachelor, Master and PhD students
Your Profile:
A university degree in Remote Sensing, Geophysics, Plant Biology, Agriculture or a natural scientific discipline with relevant and proven experience in the field of activity
Sound background in the use of UAVs and other unmanned aerial vehicles in research and agricultural practice
Experience in the processing of UAV image data using Agisoft Metashape or Pix4D
Sound background and proven expertise in processing and analyzing multispectral data
Profound knowledge in the field of atmospheric and geometric correction methods applied to ground-based, airborne and satellite data
Wide experience in interpretation and retrieval of vegetation traits from multispectral imagery
Special interest in retrieving and interpreting spectrally resolved UAV data from agricultural settings
Experience with programming languages and software that are used for multi-/hyperspectral image processing, e.g. ENVI/IDL, Python, R, Matlab etc.
Willingness and interest to work in Developing Countries
Ability to work in the field, partly also in remote locations outside of Germany, in specific in Nigeria and Taiwain
Driver license obligatory, already existing licenses to operate UAV platforms are a benefit
Our Offer:
Exciting working environment on an attractive research campus with excellent infrastructure, located between the cities of Cologne, Düsseldorf, and Aachen
Possibility to develop own scientific profile in the emerging topic of ‚remote sensing of vegetation traits using unmanned aerial vehicles'
Integration in a world-leading research group in this field with a stimulating scientific environment
Attendance of national and international conferences and workshops
Possibility for further scientific and technical training through international experts
Flexible working hours and various opportunities to reconcile work and private life
Position initially limited to three years, with the possibility of a longer-term perspective
The position can also be filled as a part-time position; flexible working time models between 50-100% are possible
Salary and social benefits in conformity with the provisions of the Collective Agreement for the Civil Service (TVöD)
Forschungszentrum Jülich promotes equal opportunities and diversity in its employment relations.
We also welcome applications from disabled persons.





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...