Skip to main content

Scientist in optical remote sensing of vegetation Forschungszentrum Jülich





Scientist in optical remote sensing of vegetation Forschungszentrum Jülich

The Plant Sciences Subinstitute of the Institute of Bio- and Geosciences (IBG) investigates the dynamics of plant processes and the interaction of plants with the environment. Plant science at Forschungszentrum Jülich plays a leading role at national and international level in the field of plant phenotyping, i.e. in the quantitative and non-invasive recording of structural and functional properties of plants important for agricultural and horticultural plant breeding. In this context, we are developing new sensors and measurement concepts and integrate them into semi- and fully automated systems. One focus of the subinstitute is the use of optical sensors to promote the automated measurement of plant traits under field conditions. Ground-based measurements are complemented by UAV, aircraft and satellite-based remote sensing approaches. Particular focus is on the development of novel non-invasive measurement approaches that include, multi- and hyperspectral imaging as well as different fluorescence retrieval techniques.
We are looking to recruit a
Scientist in optical remote sensing of vegetation
Your Job:
Focus of the research will be on exploiting hyper- and multispectral UAV data from cassava and other crops to derive structural and functional plant properties
Contribution to flight and campaign planning using rotary and fixed-wing unmanned platforms (UAVs) in Nigeria, Taiwan and Germany
Integration of multi- and hyperspectral sensors into existing UAV platforms
Measuring canopy traits in cassava plants in a project collaboration funded by the Bill and Melinda Gates Foundation
Development and refinement of algorithms for the preprocessing, atmospheric correction and georectification of spectrally resolved UAV data
Registration of optical reflectance data with experimental plot set-ups using GIS layers
Retrieval of canopy height models using custom based codes for data processing
Calculation of classical vegetation traits by exploiting the information content of the optical sensors
Radiative transfer inversion of leaf and canopy models to derive structural and functional vegetation traits from the combination of UAV based imaging data and other information sources, such as meteorological and ground based data
Interpretation of the results, correlation of remote sensing data with ground based plant traits and the integration within different synergistic projects
Presentation of the results at scientific conferences and within project reports
Writing of scientific papers in this field by taking advantage of the large body of research data that are available in the group
Contribution to project proposals in this research field
Contribution to supervision of Bachelor, Master and PhD students
Your Profile:
A university degree in Remote Sensing, Geophysics, Plant Biology, Agriculture or a natural scientific discipline with relevant and proven experience in the field of activity
Sound background in the use of UAVs and other unmanned aerial vehicles in research and agricultural practice
Experience in the processing of UAV image data using Agisoft Metashape or Pix4D
Sound background and proven expertise in processing and analyzing multispectral data
Profound knowledge in the field of atmospheric and geometric correction methods applied to ground-based, airborne and satellite data
Wide experience in interpretation and retrieval of vegetation traits from multispectral imagery
Special interest in retrieving and interpreting spectrally resolved UAV data from agricultural settings
Experience with programming languages and software that are used for multi-/hyperspectral image processing, e.g. ENVI/IDL, Python, R, Matlab etc.
Willingness and interest to work in Developing Countries
Ability to work in the field, partly also in remote locations outside of Germany, in specific in Nigeria and Taiwain
Driver license obligatory, already existing licenses to operate UAV platforms are a benefit
Our Offer:
Exciting working environment on an attractive research campus with excellent infrastructure, located between the cities of Cologne, Düsseldorf, and Aachen
Possibility to develop own scientific profile in the emerging topic of ‚remote sensing of vegetation traits using unmanned aerial vehicles'
Integration in a world-leading research group in this field with a stimulating scientific environment
Attendance of national and international conferences and workshops
Possibility for further scientific and technical training through international experts
Flexible working hours and various opportunities to reconcile work and private life
Position initially limited to three years, with the possibility of a longer-term perspective
The position can also be filled as a part-time position; flexible working time models between 50-100% are possible
Salary and social benefits in conformity with the provisions of the Collective Agreement for the Civil Service (TVöD)
Forschungszentrum Jülich promotes equal opportunities and diversity in its employment relations.
We also welcome applications from disabled persons.





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Earthquake. Terminology and Concept

Earthquake It is a transient violent movement of the Earth's surface that follows a release of energy in the Earth's crust. 2. Magnitude It is a measure of the amount of energy released during an earthquake and expressed by Richter scale. Effect of earthquake according to Richter scale . Richter Magnitude Earthquake effects Less than 3.5 Generally not felt, but recorded. 3.5-5.4 Often felt, but rarely causes damage. Under 6.0 At most, slight damage to well-designed buildings. Can cause major damage to poorly constructed buildings over small regions. 6.1-6.9 Can be destructive in areas up to about 100 across where people live. 7.0-7.9 Major earthquake. Can cause serious damage over larger areas. 8 or greater Great Earthquake. Can cause serious damage in areas several hundred across. 3. Intensity Intensity is a qualitative measure of the actual shaking at a location during an Earthquake, and is assigned in Roman Capital Numerical. It refers to the effects of earthqu