Skip to main content

Scientific developer for ecological applications of LiDAR Remote Sensing University of Amsterdam / Universiteit van Amsterdam




Scientific developer for ecological applications of LiDAR Remote Sensing University of Amsterdam / Universiteit van Amsterdam


We have a job opening for a two-year LiDAR Remote Sensing Scientist for ecological applications at the University of Amsterdam, The Netherlands. The person will be responsible for developing scientific workflows for ecological applications in biodiversity and ecosystem science using airborne and spaceborne LiDAR data. The person will also closely interact with computer scientists and software engineers to make the workflows and tools available in the context of a Virtual Research Environment (VRE).
What are you going to do?
We are looking for a candidate with exceptionally strong skills in LiDAR processing and ecological applications of LiDAR data in relation to biodiversity and ecosystems. The person will develop workflows using LiDAR data from multiple country-wide airborne laser scanning surveys as well as from spaceborne observations of the new Global Ecosystem Dynamics Investigation (GEDI). Ecological applications can include (but are not restricted to) species distribution or biodiversity models with LiDAR metrics, land cover and habitat classification and mapping using LiDAR with machine learning, or change detection of ecosystem structure using multi-temporal LiDAR datasets. The person should show a passion for biodiversity and ecosystems and a deep understanding of how biodiversity and ecosystems change due to natural processes or human impact. Excellent programming skills in Python and R and experience in GIS and geospatial analyses are required. Additional experience in handling other Earth observation and remote sensing data is advantageous. The candidate should also show strong writing and verbal communication skills and have a successful track-record of publications.
You will develop scientific workflows in the context of establishing a Virtual Lab for ecological applications of LiDAR data. This will include the processing of various national, multi-terabyte airborne LiDAR data using a newly developed point cloud processing software tool Laserchicken, and a related High Performance Computing (HPC) processing pipeline called Laserfarm, both of which are implemented in Python. You will also process LiDAR data from the Global Ecosystem Dynamics Investigation (GEDI) using e.g. rGEDI. Other open source software tools for processing and visualization of point clouds and raster data (e.g. rLiDAR, raster, PDAL, GDAL) are also relevant. Using the derived metrics of ecosystem height, ecosystem cover, and ecosystem structural complexity you will develop ecological applications of LiDAR data with relevance to biodiversity and ecosystem science.
This will include national to global analyses of species distributions, ecosystem structure change, and/or mapping and classification of animal habitats using LiDAR and machine learning.
What do we require?
The ideal candidate should meet the following requirements:
a PhD degree in LiDAR, remote sensing, ecology, biodiversity, Earth science or a related discipline;
interest, passion and experience in LiDAR, biodiversity, computational ecology and Earth observation;
exceptional quantitative skills and profound experience in handling and processing LiDAR data (e.g. scripting/programming in Python and R, geospatial analyses, handling of remote sensing datasets);
experience with computational workflows;
willingness to work in a multidisciplinary team (ecology, computer science; software engineering);
proficiency in scientific writing;
ability to speak and communicate in English at an academic level;
successful and strong track-record of publications.
Of additional advantage:
strong skills in species distribution modelling, change detection or machine learning;
background in biodiversity informatics and open data science;
experience in data and computer science.
Contract and Working environment
The candidate will be contracted by the LifeWatch ERIC Virtual Laboratory and Innovation Center in Amsterdam, The Netherlands and will work within the premises of the University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED).
LifeWatch ERIC is a European Infrastructure Consortium providing e-Science research facilities to scientists seeking to increase our knowledge and deepen our understanding of biodiversity organisation and ecosystem functions and services in order to support civil society in addressing key planetary challenges.
LifeWatch ERIC seeks to understand the complex interactions between species and the environment, taking advantage of High-Performance, Grid and Big Data computing systems, and the development of advanced modelling tools to implement management measures aimed at preserving life on Earth.
Combining a wide range of ICT tools and resources with deep knowledge of the domain, LifeWatch ERIC's mission is to be a 'first class' worldwide provider of content and services for the biodiversity research community by:
offering new opportunities for large-scale scientific development;
enabling accelerated data capture with innovative new technologies;
supporting knowledge-based decision-making for biodiversity and ecosystem management;
providing training, dissemination and awareness programmes.
The Institute for Biodiversity and Ecosystem Dynamics (IBED) is one of eight research institutes within the Faculty of Science at the University of Amsterdam. Our scientific work aims at a better understanding of the dynamics of ecosystems at all relevant levels, from genes to ecosystems, using a truly multi-disciplinary approach, and based on both experimental and theoretical research. Scientific focus is on aquatic (both freshwater and marine) and terrestrial ecosystems, evolutionary and population biology, ecosystem and landscape dynamics, and theoretical and computational ecology. We want to unravel how ecosystems function in all their complexity, and how they change due to natural processes and human activities.
You will closely collaborate with computer scientists and software engineers who are developing the technical functionality of Virtual Research Environments (VREs) and the containerization of the applications. It is expected that your work results in scientific papers, and that you participate and present the research at LifeWatch and other international meetings. In your daily work, you will be embedded in the Biogeography & Macroecology (BIOMAC) lab and the Department Theoretical and Computational Ecology, and have close links to the Quality Critical Distributed Computing team of the Multiscale Networked Systems (MNS) research group.
We offer a position for 38 hours a week in an exciting, dynamic and international research environment, starting as soon as possible. The full-time employment contract will be on a temporary basis for a maximum period of 2 years with opportunities for an extension.
The Collective Labour Agreement of Dutch Universities will be applicable for salary. The annual salary will be increased by 8 % holiday allowance and 8.3 % end-of-year bonus. You will participate in the LifeWatch-ERIC Netherlands pension scheme with RESAVER.
Questions?
Do you have questions about this vacancy? Or do you want to know more about our organisation? Please contact:
Dr W. Daniel Kissling, associate professor of quantitative biodiversity science (daily supervisor)
You may also visit his profile page.
Job application
LifeWatch ERIC is committed to a diverse and non-discriminatory workplace. All LifeWatch ERIC Staff shall be treated with equal respect and will have an equal opportunity to contribute fully to the success of LifeWatch based on their individual skills and interests.
Applications should include the following documents, all in one PDF file and in the following order:
motivation letter (max. 1-2 pages, containing your motivation for applying and a description of your previous research experience);
list of your 2-3 most significant publications or systems (incl. a short description in 2-3 sentences what is interesting in each paper);
short outline (max. 1 page) of ideas how to develop LiDAR data products for ecological applications in biodiversity and ecosystem science (will only be used for evaluating the applicants);
CV (with applicant's e-address and telephone number, documentation of education and complete publication list, and contact details of two professional references [name, address, telephone and email]. References will only be contacted if the candidate is short-listed.
Applications should be sent ultimately at 31 August 2020 to Dr W. Daniel Kissling with the job title in the subject field.
#LI-DNP



....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces