Skip to main content

Scientific developer for ecological applications of LiDAR Remote Sensing University of Amsterdam / Universiteit van Amsterdam




Scientific developer for ecological applications of LiDAR Remote Sensing University of Amsterdam / Universiteit van Amsterdam


We have a job opening for a two-year LiDAR Remote Sensing Scientist for ecological applications at the University of Amsterdam, The Netherlands. The person will be responsible for developing scientific workflows for ecological applications in biodiversity and ecosystem science using airborne and spaceborne LiDAR data. The person will also closely interact with computer scientists and software engineers to make the workflows and tools available in the context of a Virtual Research Environment (VRE).
What are you going to do?
We are looking for a candidate with exceptionally strong skills in LiDAR processing and ecological applications of LiDAR data in relation to biodiversity and ecosystems. The person will develop workflows using LiDAR data from multiple country-wide airborne laser scanning surveys as well as from spaceborne observations of the new Global Ecosystem Dynamics Investigation (GEDI). Ecological applications can include (but are not restricted to) species distribution or biodiversity models with LiDAR metrics, land cover and habitat classification and mapping using LiDAR with machine learning, or change detection of ecosystem structure using multi-temporal LiDAR datasets. The person should show a passion for biodiversity and ecosystems and a deep understanding of how biodiversity and ecosystems change due to natural processes or human impact. Excellent programming skills in Python and R and experience in GIS and geospatial analyses are required. Additional experience in handling other Earth observation and remote sensing data is advantageous. The candidate should also show strong writing and verbal communication skills and have a successful track-record of publications.
You will develop scientific workflows in the context of establishing a Virtual Lab for ecological applications of LiDAR data. This will include the processing of various national, multi-terabyte airborne LiDAR data using a newly developed point cloud processing software tool Laserchicken, and a related High Performance Computing (HPC) processing pipeline called Laserfarm, both of which are implemented in Python. You will also process LiDAR data from the Global Ecosystem Dynamics Investigation (GEDI) using e.g. rGEDI. Other open source software tools for processing and visualization of point clouds and raster data (e.g. rLiDAR, raster, PDAL, GDAL) are also relevant. Using the derived metrics of ecosystem height, ecosystem cover, and ecosystem structural complexity you will develop ecological applications of LiDAR data with relevance to biodiversity and ecosystem science.
This will include national to global analyses of species distributions, ecosystem structure change, and/or mapping and classification of animal habitats using LiDAR and machine learning.
What do we require?
The ideal candidate should meet the following requirements:
a PhD degree in LiDAR, remote sensing, ecology, biodiversity, Earth science or a related discipline;
interest, passion and experience in LiDAR, biodiversity, computational ecology and Earth observation;
exceptional quantitative skills and profound experience in handling and processing LiDAR data (e.g. scripting/programming in Python and R, geospatial analyses, handling of remote sensing datasets);
experience with computational workflows;
willingness to work in a multidisciplinary team (ecology, computer science; software engineering);
proficiency in scientific writing;
ability to speak and communicate in English at an academic level;
successful and strong track-record of publications.
Of additional advantage:
strong skills in species distribution modelling, change detection or machine learning;
background in biodiversity informatics and open data science;
experience in data and computer science.
Contract and Working environment
The candidate will be contracted by the LifeWatch ERIC Virtual Laboratory and Innovation Center in Amsterdam, The Netherlands and will work within the premises of the University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED).
LifeWatch ERIC is a European Infrastructure Consortium providing e-Science research facilities to scientists seeking to increase our knowledge and deepen our understanding of biodiversity organisation and ecosystem functions and services in order to support civil society in addressing key planetary challenges.
LifeWatch ERIC seeks to understand the complex interactions between species and the environment, taking advantage of High-Performance, Grid and Big Data computing systems, and the development of advanced modelling tools to implement management measures aimed at preserving life on Earth.
Combining a wide range of ICT tools and resources with deep knowledge of the domain, LifeWatch ERIC's mission is to be a 'first class' worldwide provider of content and services for the biodiversity research community by:
offering new opportunities for large-scale scientific development;
enabling accelerated data capture with innovative new technologies;
supporting knowledge-based decision-making for biodiversity and ecosystem management;
providing training, dissemination and awareness programmes.
The Institute for Biodiversity and Ecosystem Dynamics (IBED) is one of eight research institutes within the Faculty of Science at the University of Amsterdam. Our scientific work aims at a better understanding of the dynamics of ecosystems at all relevant levels, from genes to ecosystems, using a truly multi-disciplinary approach, and based on both experimental and theoretical research. Scientific focus is on aquatic (both freshwater and marine) and terrestrial ecosystems, evolutionary and population biology, ecosystem and landscape dynamics, and theoretical and computational ecology. We want to unravel how ecosystems function in all their complexity, and how they change due to natural processes and human activities.
You will closely collaborate with computer scientists and software engineers who are developing the technical functionality of Virtual Research Environments (VREs) and the containerization of the applications. It is expected that your work results in scientific papers, and that you participate and present the research at LifeWatch and other international meetings. In your daily work, you will be embedded in the Biogeography & Macroecology (BIOMAC) lab and the Department Theoretical and Computational Ecology, and have close links to the Quality Critical Distributed Computing team of the Multiscale Networked Systems (MNS) research group.
We offer a position for 38 hours a week in an exciting, dynamic and international research environment, starting as soon as possible. The full-time employment contract will be on a temporary basis for a maximum period of 2 years with opportunities for an extension.
The Collective Labour Agreement of Dutch Universities will be applicable for salary. The annual salary will be increased by 8 % holiday allowance and 8.3 % end-of-year bonus. You will participate in the LifeWatch-ERIC Netherlands pension scheme with RESAVER.
Questions?
Do you have questions about this vacancy? Or do you want to know more about our organisation? Please contact:
Dr W. Daniel Kissling, associate professor of quantitative biodiversity science (daily supervisor)
You may also visit his profile page.
Job application
LifeWatch ERIC is committed to a diverse and non-discriminatory workplace. All LifeWatch ERIC Staff shall be treated with equal respect and will have an equal opportunity to contribute fully to the success of LifeWatch based on their individual skills and interests.
Applications should include the following documents, all in one PDF file and in the following order:
motivation letter (max. 1-2 pages, containing your motivation for applying and a description of your previous research experience);
list of your 2-3 most significant publications or systems (incl. a short description in 2-3 sentences what is interesting in each paper);
short outline (max. 1 page) of ideas how to develop LiDAR data products for ecological applications in biodiversity and ecosystem science (will only be used for evaluating the applicants);
CV (with applicant's e-address and telephone number, documentation of education and complete publication list, and contact details of two professional references [name, address, telephone and email]. References will only be contacted if the candidate is short-listed.
Applications should be sent ultimately at 31 August 2020 to Dr W. Daniel Kissling with the job title in the subject field.
#LI-DNP



....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...