Skip to main content

Scientific developer for ecological applications of LiDAR Remote Sensing University of Amsterdam / Universiteit van Amsterdam




Scientific developer for ecological applications of LiDAR Remote Sensing University of Amsterdam / Universiteit van Amsterdam


We have a job opening for a two-year LiDAR Remote Sensing Scientist for ecological applications at the University of Amsterdam, The Netherlands. The person will be responsible for developing scientific workflows for ecological applications in biodiversity and ecosystem science using airborne and spaceborne LiDAR data. The person will also closely interact with computer scientists and software engineers to make the workflows and tools available in the context of a Virtual Research Environment (VRE).
What are you going to do?
We are looking for a candidate with exceptionally strong skills in LiDAR processing and ecological applications of LiDAR data in relation to biodiversity and ecosystems. The person will develop workflows using LiDAR data from multiple country-wide airborne laser scanning surveys as well as from spaceborne observations of the new Global Ecosystem Dynamics Investigation (GEDI). Ecological applications can include (but are not restricted to) species distribution or biodiversity models with LiDAR metrics, land cover and habitat classification and mapping using LiDAR with machine learning, or change detection of ecosystem structure using multi-temporal LiDAR datasets. The person should show a passion for biodiversity and ecosystems and a deep understanding of how biodiversity and ecosystems change due to natural processes or human impact. Excellent programming skills in Python and R and experience in GIS and geospatial analyses are required. Additional experience in handling other Earth observation and remote sensing data is advantageous. The candidate should also show strong writing and verbal communication skills and have a successful track-record of publications.
You will develop scientific workflows in the context of establishing a Virtual Lab for ecological applications of LiDAR data. This will include the processing of various national, multi-terabyte airborne LiDAR data using a newly developed point cloud processing software tool Laserchicken, and a related High Performance Computing (HPC) processing pipeline called Laserfarm, both of which are implemented in Python. You will also process LiDAR data from the Global Ecosystem Dynamics Investigation (GEDI) using e.g. rGEDI. Other open source software tools for processing and visualization of point clouds and raster data (e.g. rLiDAR, raster, PDAL, GDAL) are also relevant. Using the derived metrics of ecosystem height, ecosystem cover, and ecosystem structural complexity you will develop ecological applications of LiDAR data with relevance to biodiversity and ecosystem science.
This will include national to global analyses of species distributions, ecosystem structure change, and/or mapping and classification of animal habitats using LiDAR and machine learning.
What do we require?
The ideal candidate should meet the following requirements:
a PhD degree in LiDAR, remote sensing, ecology, biodiversity, Earth science or a related discipline;
interest, passion and experience in LiDAR, biodiversity, computational ecology and Earth observation;
exceptional quantitative skills and profound experience in handling and processing LiDAR data (e.g. scripting/programming in Python and R, geospatial analyses, handling of remote sensing datasets);
experience with computational workflows;
willingness to work in a multidisciplinary team (ecology, computer science; software engineering);
proficiency in scientific writing;
ability to speak and communicate in English at an academic level;
successful and strong track-record of publications.
Of additional advantage:
strong skills in species distribution modelling, change detection or machine learning;
background in biodiversity informatics and open data science;
experience in data and computer science.
Contract and Working environment
The candidate will be contracted by the LifeWatch ERIC Virtual Laboratory and Innovation Center in Amsterdam, The Netherlands and will work within the premises of the University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED).
LifeWatch ERIC is a European Infrastructure Consortium providing e-Science research facilities to scientists seeking to increase our knowledge and deepen our understanding of biodiversity organisation and ecosystem functions and services in order to support civil society in addressing key planetary challenges.
LifeWatch ERIC seeks to understand the complex interactions between species and the environment, taking advantage of High-Performance, Grid and Big Data computing systems, and the development of advanced modelling tools to implement management measures aimed at preserving life on Earth.
Combining a wide range of ICT tools and resources with deep knowledge of the domain, LifeWatch ERIC's mission is to be a 'first class' worldwide provider of content and services for the biodiversity research community by:
offering new opportunities for large-scale scientific development;
enabling accelerated data capture with innovative new technologies;
supporting knowledge-based decision-making for biodiversity and ecosystem management;
providing training, dissemination and awareness programmes.
The Institute for Biodiversity and Ecosystem Dynamics (IBED) is one of eight research institutes within the Faculty of Science at the University of Amsterdam. Our scientific work aims at a better understanding of the dynamics of ecosystems at all relevant levels, from genes to ecosystems, using a truly multi-disciplinary approach, and based on both experimental and theoretical research. Scientific focus is on aquatic (both freshwater and marine) and terrestrial ecosystems, evolutionary and population biology, ecosystem and landscape dynamics, and theoretical and computational ecology. We want to unravel how ecosystems function in all their complexity, and how they change due to natural processes and human activities.
You will closely collaborate with computer scientists and software engineers who are developing the technical functionality of Virtual Research Environments (VREs) and the containerization of the applications. It is expected that your work results in scientific papers, and that you participate and present the research at LifeWatch and other international meetings. In your daily work, you will be embedded in the Biogeography & Macroecology (BIOMAC) lab and the Department Theoretical and Computational Ecology, and have close links to the Quality Critical Distributed Computing team of the Multiscale Networked Systems (MNS) research group.
We offer a position for 38 hours a week in an exciting, dynamic and international research environment, starting as soon as possible. The full-time employment contract will be on a temporary basis for a maximum period of 2 years with opportunities for an extension.
The Collective Labour Agreement of Dutch Universities will be applicable for salary. The annual salary will be increased by 8 % holiday allowance and 8.3 % end-of-year bonus. You will participate in the LifeWatch-ERIC Netherlands pension scheme with RESAVER.
Questions?
Do you have questions about this vacancy? Or do you want to know more about our organisation? Please contact:
Dr W. Daniel Kissling, associate professor of quantitative biodiversity science (daily supervisor)
You may also visit his profile page.
Job application
LifeWatch ERIC is committed to a diverse and non-discriminatory workplace. All LifeWatch ERIC Staff shall be treated with equal respect and will have an equal opportunity to contribute fully to the success of LifeWatch based on their individual skills and interests.
Applications should include the following documents, all in one PDF file and in the following order:
motivation letter (max. 1-2 pages, containing your motivation for applying and a description of your previous research experience);
list of your 2-3 most significant publications or systems (incl. a short description in 2-3 sentences what is interesting in each paper);
short outline (max. 1 page) of ideas how to develop LiDAR data products for ecological applications in biodiversity and ecosystem science (will only be used for evaluating the applicants);
CV (with applicant's e-address and telephone number, documentation of education and complete publication list, and contact details of two professional references [name, address, telephone and email]. References will only be contacted if the candidate is short-listed.
Applications should be sent ultimately at 31 August 2020 to Dr W. Daniel Kissling with the job title in the subject field.
#LI-DNP



....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...