Skip to main content

Researcher - Monitoring and Mapping of deforestation NIBIO




Researcher - Monitoring and Mapping of deforestation NIBIO

Key Information
At our main office in Ås, Norway, we have a vacant position as Researcher in Monitoring and Mapping of deforestation.
National Carbon Monitoring Centre (NCMC), is a Norwegian government funded institutional capacity building project hosted at Sokoine University of Agriculture, Tanzania. NCMC is designed to co-ordinate national MRV processes, mainly for the land use, land use change and forestry. NCMC's specific roles include the operation of the Tanzanian MRV system, coordinate the national forest and carbon data collection, and analysis, storage and verification of the results for the UNFCCC and International Community.
NIBIO is the lead international partner providing technical capacity building and support through sharing of expertise, approaches, best practices of analyses, methodologies, tools, and facilitate an overall knowledge sharing with Tanzanian institutions. The candidate will participate in this work with focus on development of the MRV system in Tanzania.
The position is located in Ås, Norway. Several trips to Africa will be required if possible given the current global health crisis. The duration of the position is two years.
Main responsibilities
Capacity building in the form of short-term practical training in Monitoring and Mapping of deforestation, forest degradation and associated carbon dynamics or forest carbon mapping capabilities in the tropical forests and woodlands in the context of climate change mitigation
Develop methods for and Integrating field inventory data with high resolution remote sensing data for accurate monitoring, reporting and verification of forest cover and carbon stock changes
Developing training guidelines and practical manuals to guide local and national training and capacity building participants
Participate in the general dissemination of the project results in terms of writing publications and giving presentations
Professional qualifications (required)
PhD in Forestry, forest management with experience in Remote sensing and Geographic Information System
OR
PhD in Remote sensing and Geographic information system with applications in Forest or land use/landcover monitoring
Willingness to travel to Africa
Will be evaluated positively
Experience with REDD+ and MRV systems
Experience with use of remotely sensed data such as Landsat, Sentinel and 3D data in forest applications such as mapping at regional or national level
Experience with the use of Geographical Information Systems, ArcGIS, QGIS in landcover, land use change mapping and visualization
Experience with remotely sensed data analysis using R or Python or other statistical computing software
Knowledge of google earth engine, collect earth tools, Global Forest Watch data, classification algorithms are assets
Experience with working in Africa
Personal qualifications
Good interpersonal and communication skills
Good analytical and problem-solving skills
Ability to work under pressure and interact with demanding users
Dedication and enthusiasm to work as part of an ambitious research team
Ability to collaborate with both internal and external experts with diverse academic backgrounds and skill sets
Salary and benefits
The position is remunerated according to the Norwegian State Salary Scale as Researcher code 1109, salary grade 59-74 (NOK 523.200 - 691.400 per year), commensurate with qualifications and experience.
Membership in the Norwegian Public Service Pension Fund, which includes a good occupational pension scheme, occupational injury and group life insurance, and low-interest home loans.
Do you need more information?
Contact Dr. Gunnhild Søgaard, tel +47 917 27 960 or Dr. Rasmus Astrup, tel +47 941 51 660 or see website www.nibio.no (http://www.nibio.no)
How to apply for the position
Please send your application with CV electronically via the link on this page.
Take diplomas and letters of recommendation with you if invited to an interview, or submit them as an attachment along with the electronic application/CV.
General information
In accordance with the Norwegian Civil Service equal opportunities policy, qualified candidates are encouraged to apply - regardless of age, gender, functional disabilities or national or ethnic background.
We would like to point out that information about applicants may be subject to public disclosure, in accordance with the Freedom of Information Act (Offentlighetsloven), Section 25. An applicant can request to be exempted from inclusion on a public list of applicants. If the request for confidentiality is denied, the applicant will be notified thereof.
Om arbeidsgiveren
NIBIO?s activities lie within agriculture, food, climate and the environment. The Institute conducts research and management support, and provides knowledge for use in national preparedness, governmental and district management, industry, and the society at large. NIBIO has approximately 700 employees present in all parts of the country. Its main office is located at Ås in Akershus. NIBIO is owned by the Ministry of Agriculture and Food.
Department of Forest and Climate conducts research on the role of forests in the climate system and the effect of climate changes on forests.
The department is working together with the Norwegian Environment Agency on the Norwegian national greenhouse gas inventory under United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol.
The department leads and participates in applied research and development projects of particular relevance to forest and climate in Africa, including capacity building in methods and tools for Monitoring, Reporting and Verification (MRV) for REDD+







....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...