Skip to main content

Researcher - Monitoring and Mapping of deforestation NIBIO




Researcher - Monitoring and Mapping of deforestation NIBIO

Key Information
At our main office in Ås, Norway, we have a vacant position as Researcher in Monitoring and Mapping of deforestation.
National Carbon Monitoring Centre (NCMC), is a Norwegian government funded institutional capacity building project hosted at Sokoine University of Agriculture, Tanzania. NCMC is designed to co-ordinate national MRV processes, mainly for the land use, land use change and forestry. NCMC's specific roles include the operation of the Tanzanian MRV system, coordinate the national forest and carbon data collection, and analysis, storage and verification of the results for the UNFCCC and International Community.
NIBIO is the lead international partner providing technical capacity building and support through sharing of expertise, approaches, best practices of analyses, methodologies, tools, and facilitate an overall knowledge sharing with Tanzanian institutions. The candidate will participate in this work with focus on development of the MRV system in Tanzania.
The position is located in Ås, Norway. Several trips to Africa will be required if possible given the current global health crisis. The duration of the position is two years.
Main responsibilities
Capacity building in the form of short-term practical training in Monitoring and Mapping of deforestation, forest degradation and associated carbon dynamics or forest carbon mapping capabilities in the tropical forests and woodlands in the context of climate change mitigation
Develop methods for and Integrating field inventory data with high resolution remote sensing data for accurate monitoring, reporting and verification of forest cover and carbon stock changes
Developing training guidelines and practical manuals to guide local and national training and capacity building participants
Participate in the general dissemination of the project results in terms of writing publications and giving presentations
Professional qualifications (required)
PhD in Forestry, forest management with experience in Remote sensing and Geographic Information System
OR
PhD in Remote sensing and Geographic information system with applications in Forest or land use/landcover monitoring
Willingness to travel to Africa
Will be evaluated positively
Experience with REDD+ and MRV systems
Experience with use of remotely sensed data such as Landsat, Sentinel and 3D data in forest applications such as mapping at regional or national level
Experience with the use of Geographical Information Systems, ArcGIS, QGIS in landcover, land use change mapping and visualization
Experience with remotely sensed data analysis using R or Python or other statistical computing software
Knowledge of google earth engine, collect earth tools, Global Forest Watch data, classification algorithms are assets
Experience with working in Africa
Personal qualifications
Good interpersonal and communication skills
Good analytical and problem-solving skills
Ability to work under pressure and interact with demanding users
Dedication and enthusiasm to work as part of an ambitious research team
Ability to collaborate with both internal and external experts with diverse academic backgrounds and skill sets
Salary and benefits
The position is remunerated according to the Norwegian State Salary Scale as Researcher code 1109, salary grade 59-74 (NOK 523.200 - 691.400 per year), commensurate with qualifications and experience.
Membership in the Norwegian Public Service Pension Fund, which includes a good occupational pension scheme, occupational injury and group life insurance, and low-interest home loans.
Do you need more information?
Contact Dr. Gunnhild Søgaard, tel +47 917 27 960 or Dr. Rasmus Astrup, tel +47 941 51 660 or see website www.nibio.no (http://www.nibio.no)
How to apply for the position
Please send your application with CV electronically via the link on this page.
Take diplomas and letters of recommendation with you if invited to an interview, or submit them as an attachment along with the electronic application/CV.
General information
In accordance with the Norwegian Civil Service equal opportunities policy, qualified candidates are encouraged to apply - regardless of age, gender, functional disabilities or national or ethnic background.
We would like to point out that information about applicants may be subject to public disclosure, in accordance with the Freedom of Information Act (Offentlighetsloven), Section 25. An applicant can request to be exempted from inclusion on a public list of applicants. If the request for confidentiality is denied, the applicant will be notified thereof.
Om arbeidsgiveren
NIBIO?s activities lie within agriculture, food, climate and the environment. The Institute conducts research and management support, and provides knowledge for use in national preparedness, governmental and district management, industry, and the society at large. NIBIO has approximately 700 employees present in all parts of the country. Its main office is located at Ås in Akershus. NIBIO is owned by the Ministry of Agriculture and Food.
Department of Forest and Climate conducts research on the role of forests in the climate system and the effect of climate changes on forests.
The department is working together with the Norwegian Environment Agency on the Norwegian national greenhouse gas inventory under United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol.
The department leads and participates in applied research and development projects of particular relevance to forest and climate in Africa, including capacity building in methods and tools for Monitoring, Reporting and Verification (MRV) for REDD+







....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...