Skip to main content

Researcher - Monitoring and Mapping of deforestation NIBIO




Researcher - Monitoring and Mapping of deforestation NIBIO

Key Information
At our main office in Ås, Norway, we have a vacant position as Researcher in Monitoring and Mapping of deforestation.
National Carbon Monitoring Centre (NCMC), is a Norwegian government funded institutional capacity building project hosted at Sokoine University of Agriculture, Tanzania. NCMC is designed to co-ordinate national MRV processes, mainly for the land use, land use change and forestry. NCMC's specific roles include the operation of the Tanzanian MRV system, coordinate the national forest and carbon data collection, and analysis, storage and verification of the results for the UNFCCC and International Community.
NIBIO is the lead international partner providing technical capacity building and support through sharing of expertise, approaches, best practices of analyses, methodologies, tools, and facilitate an overall knowledge sharing with Tanzanian institutions. The candidate will participate in this work with focus on development of the MRV system in Tanzania.
The position is located in Ås, Norway. Several trips to Africa will be required if possible given the current global health crisis. The duration of the position is two years.
Main responsibilities
Capacity building in the form of short-term practical training in Monitoring and Mapping of deforestation, forest degradation and associated carbon dynamics or forest carbon mapping capabilities in the tropical forests and woodlands in the context of climate change mitigation
Develop methods for and Integrating field inventory data with high resolution remote sensing data for accurate monitoring, reporting and verification of forest cover and carbon stock changes
Developing training guidelines and practical manuals to guide local and national training and capacity building participants
Participate in the general dissemination of the project results in terms of writing publications and giving presentations
Professional qualifications (required)
PhD in Forestry, forest management with experience in Remote sensing and Geographic Information System
OR
PhD in Remote sensing and Geographic information system with applications in Forest or land use/landcover monitoring
Willingness to travel to Africa
Will be evaluated positively
Experience with REDD+ and MRV systems
Experience with use of remotely sensed data such as Landsat, Sentinel and 3D data in forest applications such as mapping at regional or national level
Experience with the use of Geographical Information Systems, ArcGIS, QGIS in landcover, land use change mapping and visualization
Experience with remotely sensed data analysis using R or Python or other statistical computing software
Knowledge of google earth engine, collect earth tools, Global Forest Watch data, classification algorithms are assets
Experience with working in Africa
Personal qualifications
Good interpersonal and communication skills
Good analytical and problem-solving skills
Ability to work under pressure and interact with demanding users
Dedication and enthusiasm to work as part of an ambitious research team
Ability to collaborate with both internal and external experts with diverse academic backgrounds and skill sets
Salary and benefits
The position is remunerated according to the Norwegian State Salary Scale as Researcher code 1109, salary grade 59-74 (NOK 523.200 - 691.400 per year), commensurate with qualifications and experience.
Membership in the Norwegian Public Service Pension Fund, which includes a good occupational pension scheme, occupational injury and group life insurance, and low-interest home loans.
Do you need more information?
Contact Dr. Gunnhild Søgaard, tel +47 917 27 960 or Dr. Rasmus Astrup, tel +47 941 51 660 or see website www.nibio.no (http://www.nibio.no)
How to apply for the position
Please send your application with CV electronically via the link on this page.
Take diplomas and letters of recommendation with you if invited to an interview, or submit them as an attachment along with the electronic application/CV.
General information
In accordance with the Norwegian Civil Service equal opportunities policy, qualified candidates are encouraged to apply - regardless of age, gender, functional disabilities or national or ethnic background.
We would like to point out that information about applicants may be subject to public disclosure, in accordance with the Freedom of Information Act (Offentlighetsloven), Section 25. An applicant can request to be exempted from inclusion on a public list of applicants. If the request for confidentiality is denied, the applicant will be notified thereof.
Om arbeidsgiveren
NIBIO?s activities lie within agriculture, food, climate and the environment. The Institute conducts research and management support, and provides knowledge for use in national preparedness, governmental and district management, industry, and the society at large. NIBIO has approximately 700 employees present in all parts of the country. Its main office is located at Ås in Akershus. NIBIO is owned by the Ministry of Agriculture and Food.
Department of Forest and Climate conducts research on the role of forests in the climate system and the effect of climate changes on forests.
The department is working together with the Norwegian Environment Agency on the Norwegian national greenhouse gas inventory under United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol.
The department leads and participates in applied research and development projects of particular relevance to forest and climate in Africa, including capacity building in methods and tools for Monitoring, Reporting and Verification (MRV) for REDD+







....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...