Skip to main content

PhD Positions - Remote Sensing for Precision Agriculture and Plant Phenotyping TU München






PhD Positions - Remote Sensing for Precision Agriculture and Plant Phenotyping TU München


The Precision Agriculture Lab at Technical University of Munich (TUM) is seeking applications for Research Assistant positions (TV-L E13, 50%) for pursuing Ph.D. degree with a research focus on remote sensing for precision agriculture and plant phenotyping. The position is limited to 36 months. Extension is negotiable depending on funds. The Precision Agriculture Lab is newly established within the Department of Life Science Engineering, TUM School of Life Sciences. We conduct interdisciplinary research from a diversity perspective of precision agriculture (or precision/smart farming). We focus on studying plant-environment interactions and their control from multiple scales by applying and integrating a range of imaging, remote sensing, statistical modeling, and computational techniques. We are seeking creative candidates who are enthusiastic about interdisciplinary research in precision agriculture – For instance, using cutting-edge sensing and modeling techniques to quantitatively characterize crop stress response and field variability, plant traits, and biodiversity; studying the underlying eco-physiological and genetic basis; and formulating technical strategies for smart farming and sustainable agriculture. Candidates will have the opportunity to work within a stimulating research environment with an interdisciplinary team. The successful candidates will be employed by TUM. You will not only work on your doctoral dissertation but also perform a wide range of research and teaching tasks. You will produce project reports, present research findings in conferences, and publish research findings in peer-reviewed journals.
Requirements:
• Master's degree in remote sensing, agricultural science, ecology, geoinformation science, agricultural engineering, biosystems engineering, or related fields.
• Expertise in remote sensing, handling big data (e.g. spectral and spatial data analyses).
• Skills in programming (e.g., R/Python/Matlab) and image processing.
• Knowledge about precision agriculture, GIS, drones, plant phenotyping, biodiversity.
• Desirable to have experience in computer vision, machine learning and deep learning.
• Proficiency in English (both oral and writing skills).
• Motivation to perform field and lab work.
• Ability to work independently as well as collaboratively in an international and interdisciplinary team.

As an equal opportunity and affirmative action employer, TUM encourages application from women as well as from all others who would bring additional diversity to the university's research and teaching strategies. Preference will be given to disabled candidates with essentially the same qualifications.

Application:
To apply, please submit your application including the following documents: 1) letter of motivation, 2) CV, 3) copies of university degree certificates and transcripts, 4) names and contact information of three references. Please send you application in a single PDF file, with the subject format 'TUM Precision Agriculture PhD Position Application', to pa@wzw.tum.de by 15.09.2020 for full consideration. Interviews of invited candidates will be held at the end of September 2020.

Contact:
Prof. Dr. Kang Yu
Precision Agriculture
Technical University of Munich
Dürnast 3, D-85354 Freising, Germany
Phone: +49 (0)81 6171 5001
Data Protection Information:
When you apply for a position with the Technical University of Munich (TUM), you are submitting personal information. With regard to personal information, please take note of the Datenschutzhinweise gemäß Art. 13 Datenschutz-Grundverordnung (DSGVO) zur Erhebung und Verarbeitung von personenbezogenen Daten im Rahmen Ihrer Bewerbung. (data protection information on collecting and processing personal data contained in your application in accordance with Art. 13 of the General Data Protection Regulation (GDPR)). By submitting your application, you confirm that you have acknowledged the above data protection information of TUM.



....
Warm Regards

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud