Skip to main content

PhD Positions - Remote Sensing for Precision Agriculture and Plant Phenotyping TU München






PhD Positions - Remote Sensing for Precision Agriculture and Plant Phenotyping TU München


The Precision Agriculture Lab at Technical University of Munich (TUM) is seeking applications for Research Assistant positions (TV-L E13, 50%) for pursuing Ph.D. degree with a research focus on remote sensing for precision agriculture and plant phenotyping. The position is limited to 36 months. Extension is negotiable depending on funds. The Precision Agriculture Lab is newly established within the Department of Life Science Engineering, TUM School of Life Sciences. We conduct interdisciplinary research from a diversity perspective of precision agriculture (or precision/smart farming). We focus on studying plant-environment interactions and their control from multiple scales by applying and integrating a range of imaging, remote sensing, statistical modeling, and computational techniques. We are seeking creative candidates who are enthusiastic about interdisciplinary research in precision agriculture – For instance, using cutting-edge sensing and modeling techniques to quantitatively characterize crop stress response and field variability, plant traits, and biodiversity; studying the underlying eco-physiological and genetic basis; and formulating technical strategies for smart farming and sustainable agriculture. Candidates will have the opportunity to work within a stimulating research environment with an interdisciplinary team. The successful candidates will be employed by TUM. You will not only work on your doctoral dissertation but also perform a wide range of research and teaching tasks. You will produce project reports, present research findings in conferences, and publish research findings in peer-reviewed journals.
Requirements:
• Master's degree in remote sensing, agricultural science, ecology, geoinformation science, agricultural engineering, biosystems engineering, or related fields.
• Expertise in remote sensing, handling big data (e.g. spectral and spatial data analyses).
• Skills in programming (e.g., R/Python/Matlab) and image processing.
• Knowledge about precision agriculture, GIS, drones, plant phenotyping, biodiversity.
• Desirable to have experience in computer vision, machine learning and deep learning.
• Proficiency in English (both oral and writing skills).
• Motivation to perform field and lab work.
• Ability to work independently as well as collaboratively in an international and interdisciplinary team.

As an equal opportunity and affirmative action employer, TUM encourages application from women as well as from all others who would bring additional diversity to the university's research and teaching strategies. Preference will be given to disabled candidates with essentially the same qualifications.

Application:
To apply, please submit your application including the following documents: 1) letter of motivation, 2) CV, 3) copies of university degree certificates and transcripts, 4) names and contact information of three references. Please send you application in a single PDF file, with the subject format 'TUM Precision Agriculture PhD Position Application', to pa@wzw.tum.de by 15.09.2020 for full consideration. Interviews of invited candidates will be held at the end of September 2020.

Contact:
Prof. Dr. Kang Yu
Precision Agriculture
Technical University of Munich
Dürnast 3, D-85354 Freising, Germany
Phone: +49 (0)81 6171 5001
Data Protection Information:
When you apply for a position with the Technical University of Munich (TUM), you are submitting personal information. With regard to personal information, please take note of the Datenschutzhinweise gemäß Art. 13 Datenschutz-Grundverordnung (DSGVO) zur Erhebung und Verarbeitung von personenbezogenen Daten im Rahmen Ihrer Bewerbung. (data protection information on collecting and processing personal data contained in your application in accordance with Art. 13 of the General Data Protection Regulation (GDPR)). By submitting your application, you confirm that you have acknowledged the above data protection information of TUM.



....
Warm Regards

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Trans-Himalayas

  1. Location and Extent The Trans-Himalayas , also known as the Tibetan Himalayas , form the northernmost mountain system of India . Stretching in an east–west alignment , they run parallel to the Greater Himalayas , covering: Ladakh (Jammu & Kashmir, UT) Himachal Pradesh (north parts) Tibet (China) They mark the southern boundary of the Tibetan Plateau and act as a transition zone between the Indian Subcontinent and Central Asia . 2. Major Ranges within the Trans-Himalayas Karakoram Range World's second highest peak: K2 (8,611 m) . Contains Siachen Glacier and Baltoro Glacier . Geopolitical importance: forms part of India–Pakistan–China border. Ladakh Range Separates the Indus Valley from the Tibetan Plateau . Known for rugged barren mountains and cold desert conditions. Zanskar Range Lies south of the Ladakh Range, cut deeply by the Zanskar River . Famous for trekking and frozen river expeditions...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...