Skip to main content

PhD Positions - Remote Sensing for Precision Agriculture and Plant Phenotyping TU München






PhD Positions - Remote Sensing for Precision Agriculture and Plant Phenotyping TU München


The Precision Agriculture Lab at Technical University of Munich (TUM) is seeking applications for Research Assistant positions (TV-L E13, 50%) for pursuing Ph.D. degree with a research focus on remote sensing for precision agriculture and plant phenotyping. The position is limited to 36 months. Extension is negotiable depending on funds. The Precision Agriculture Lab is newly established within the Department of Life Science Engineering, TUM School of Life Sciences. We conduct interdisciplinary research from a diversity perspective of precision agriculture (or precision/smart farming). We focus on studying plant-environment interactions and their control from multiple scales by applying and integrating a range of imaging, remote sensing, statistical modeling, and computational techniques. We are seeking creative candidates who are enthusiastic about interdisciplinary research in precision agriculture – For instance, using cutting-edge sensing and modeling techniques to quantitatively characterize crop stress response and field variability, plant traits, and biodiversity; studying the underlying eco-physiological and genetic basis; and formulating technical strategies for smart farming and sustainable agriculture. Candidates will have the opportunity to work within a stimulating research environment with an interdisciplinary team. The successful candidates will be employed by TUM. You will not only work on your doctoral dissertation but also perform a wide range of research and teaching tasks. You will produce project reports, present research findings in conferences, and publish research findings in peer-reviewed journals.
Requirements:
• Master's degree in remote sensing, agricultural science, ecology, geoinformation science, agricultural engineering, biosystems engineering, or related fields.
• Expertise in remote sensing, handling big data (e.g. spectral and spatial data analyses).
• Skills in programming (e.g., R/Python/Matlab) and image processing.
• Knowledge about precision agriculture, GIS, drones, plant phenotyping, biodiversity.
• Desirable to have experience in computer vision, machine learning and deep learning.
• Proficiency in English (both oral and writing skills).
• Motivation to perform field and lab work.
• Ability to work independently as well as collaboratively in an international and interdisciplinary team.

As an equal opportunity and affirmative action employer, TUM encourages application from women as well as from all others who would bring additional diversity to the university's research and teaching strategies. Preference will be given to disabled candidates with essentially the same qualifications.

Application:
To apply, please submit your application including the following documents: 1) letter of motivation, 2) CV, 3) copies of university degree certificates and transcripts, 4) names and contact information of three references. Please send you application in a single PDF file, with the subject format 'TUM Precision Agriculture PhD Position Application', to pa@wzw.tum.de by 15.09.2020 for full consideration. Interviews of invited candidates will be held at the end of September 2020.

Contact:
Prof. Dr. Kang Yu
Precision Agriculture
Technical University of Munich
Dürnast 3, D-85354 Freising, Germany
Phone: +49 (0)81 6171 5001
Data Protection Information:
When you apply for a position with the Technical University of Munich (TUM), you are submitting personal information. With regard to personal information, please take note of the Datenschutzhinweise gemäß Art. 13 Datenschutz-Grundverordnung (DSGVO) zur Erhebung und Verarbeitung von personenbezogenen Daten im Rahmen Ihrer Bewerbung. (data protection information on collecting and processing personal data contained in your application in accordance with Art. 13 of the General Data Protection Regulation (GDPR)). By submitting your application, you confirm that you have acknowledged the above data protection information of TUM.



....
Warm Regards

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...