Skip to main content

PhD Positions - Remote Sensing for Precision Agriculture and Plant Phenotyping TU München






PhD Positions - Remote Sensing for Precision Agriculture and Plant Phenotyping TU München


The Precision Agriculture Lab at Technical University of Munich (TUM) is seeking applications for Research Assistant positions (TV-L E13, 50%) for pursuing Ph.D. degree with a research focus on remote sensing for precision agriculture and plant phenotyping. The position is limited to 36 months. Extension is negotiable depending on funds. The Precision Agriculture Lab is newly established within the Department of Life Science Engineering, TUM School of Life Sciences. We conduct interdisciplinary research from a diversity perspective of precision agriculture (or precision/smart farming). We focus on studying plant-environment interactions and their control from multiple scales by applying and integrating a range of imaging, remote sensing, statistical modeling, and computational techniques. We are seeking creative candidates who are enthusiastic about interdisciplinary research in precision agriculture – For instance, using cutting-edge sensing and modeling techniques to quantitatively characterize crop stress response and field variability, plant traits, and biodiversity; studying the underlying eco-physiological and genetic basis; and formulating technical strategies for smart farming and sustainable agriculture. Candidates will have the opportunity to work within a stimulating research environment with an interdisciplinary team. The successful candidates will be employed by TUM. You will not only work on your doctoral dissertation but also perform a wide range of research and teaching tasks. You will produce project reports, present research findings in conferences, and publish research findings in peer-reviewed journals.
Requirements:
• Master's degree in remote sensing, agricultural science, ecology, geoinformation science, agricultural engineering, biosystems engineering, or related fields.
• Expertise in remote sensing, handling big data (e.g. spectral and spatial data analyses).
• Skills in programming (e.g., R/Python/Matlab) and image processing.
• Knowledge about precision agriculture, GIS, drones, plant phenotyping, biodiversity.
• Desirable to have experience in computer vision, machine learning and deep learning.
• Proficiency in English (both oral and writing skills).
• Motivation to perform field and lab work.
• Ability to work independently as well as collaboratively in an international and interdisciplinary team.

As an equal opportunity and affirmative action employer, TUM encourages application from women as well as from all others who would bring additional diversity to the university's research and teaching strategies. Preference will be given to disabled candidates with essentially the same qualifications.

Application:
To apply, please submit your application including the following documents: 1) letter of motivation, 2) CV, 3) copies of university degree certificates and transcripts, 4) names and contact information of three references. Please send you application in a single PDF file, with the subject format 'TUM Precision Agriculture PhD Position Application', to pa@wzw.tum.de by 15.09.2020 for full consideration. Interviews of invited candidates will be held at the end of September 2020.

Contact:
Prof. Dr. Kang Yu
Precision Agriculture
Technical University of Munich
Dürnast 3, D-85354 Freising, Germany
Phone: +49 (0)81 6171 5001
Data Protection Information:
When you apply for a position with the Technical University of Munich (TUM), you are submitting personal information. With regard to personal information, please take note of the Datenschutzhinweise gemäß Art. 13 Datenschutz-Grundverordnung (DSGVO) zur Erhebung und Verarbeitung von personenbezogenen Daten im Rahmen Ihrer Bewerbung. (data protection information on collecting and processing personal data contained in your application in accordance with Art. 13 of the General Data Protection Regulation (GDPR)). By submitting your application, you confirm that you have acknowledged the above data protection information of TUM.



....
Warm Regards

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...