Skip to main content

PhD position on remote sensing of ice shelf thinning Utrecht University




PhD position on remote sensing of ice shelf thinning Utrecht University


Functie
Antarctic mass loss is the largest source of uncertainty in current sea level rise projections. Ice shelf instability plays a key role in this uncertainty as ice shelves are the floating gatekeepers that surround 75% of Antarctica's coastline and that buttress the contribution of grounded ice to sea level rise. Although basal melting is known to be one of the key processes for ice shelf instability, the quantitative understanding of this process and how much, how fast it weakens ice shelves is limited as it is determined by fine scale processes. Until recently, these were difficult to observe, but the recent availability of high-resolution satellite measurements now offers the opportunity to quantify the role of channelized melting on ice shelf instability across Antarctica.

In this project, you will combine various remote sensing data sets, such as altimetry measurements (CryoSat-2, Sentinel-3 and ICESat-2) and stereoscopic digital elevation models (e.g.  Reference Elevation Model of Antarctica) to obtain time series of ice shelf thinning at high temporal and spatial resolution. These estimates will be combined with output from a regional climate model to account for changes in snowpack thickness, to isolate basal melt features, melt channel geometry and growth, grounding line migration and frontal iceberg. Furthermore, land-ice elevation changes will also be produced near the grounding zone to monitor the dynamic response of the ice sheet to changes in the ice shelf thickness.

During your project, you will work in close collaboration with remote sensing experts at Delft University of Technology. Your results will be used to validate and calibrate models of basal melt and ice sheet dynamics developed by your colleagues at the Netherlands Royal Meteorological Institute (KNMI) and Université Libre de Bruxelles.

This position is part of the HiRISE project, a collaboration between Researchers at Utrecht University, Delft University of Technology, the Netherlands Royal Meteorological Institute (KNMI), Royal Netherlands Institute for Sea Research (NIOZ) and Université Libre de Bruxelles, and funded by the Netherlands Organisation for Scientific Research (NWO). The project combines field measurements, satellite data and climate models to chart the current state of Antarctica's ice shelves with high resolution and accuracy and reduce the uncertainty in projections of sea level rise. The HiRISE team will eventually consist of four PhD candidates, four Postdocs and one Technician. During the project, you will spend part of your time at one of the collaborating institutes and actively exchange your results, ideas and plans during regular meetings with the other team members.

We aim to start the project on December 1, 2020, or earlier.
📷📷📷
Profiel
Our ideal candidate is driven, positive and collaborative and has:
a MSc in Remote Sensing, Geodesy, Aerospace Engineering, Geophysics, Glaciology or a related discipline;
strong programming skills (Fortran, Python or similar);
experience with statistical/mathematical software environments such as R or Matlab;
experience in development of data processing algorithms;
good reporting and presentation skills;
an excellent level of written and spoken English;
the ability to work independently, to critically assess own results and to cooperate within a wider research team.
To excel in this role, you have:
affinity with remote sensing of ice sheet and ice shelf processes, in particular altimetry or DEM differencing;
experience in handling large data sets and parallel computing, high performance computing or cloud computing.
📷📷📷
Aanbod
an inspiring, open minded and open research group;
a job with national and international collaboration;
research on a challenging topic with great societal relevance;
a position for 4 years;
a full-time gross salary starting for PhD students at €2,395 and increasing to €3,061 per month during the appointment (scale P);
benefits including 8% holiday bonus and 8.3% end-of-year bonus;
a pension scheme, partially paid parental leave, and flexible employment conditions based on the Collective Labour Agreement Dutch Universities (cao).
In addition to the employment conditions laid down in the cao for Dutch Universities, Utrecht University has a number of its own arrangements. For example, there are agreements on professional development, leave arrangements and sports. We also give you the opportunity to expand your terms of employment yourself via the Employment Conditions Selection Model. This is how we like to encourage you to continue to grow.

More information about working at the Faculty of Science can be found here.
Over de organisatie
The Institute for Marine and Atmospheric Research Utrecht (IMAU) offers a unique research and teaching environment, in which the fundamentals of the climate system are studied. Research is organized in five themes: Atmospheric Dynamics, Atmospheric Physics and Chemistry, Coastal and Shelf Sea Dynamics, Ice and Climate and Oceans and Climate. In 2017, IMAU research quality and impact were qualified as 'world leading' by an international visitation committee. Currently, IMAU employs 15 faculty members and 10 support staff and around 20 Postdocs and 20 PhD candidates.

The Ice and Climate group at IMAU is an inspiring, high-quality and versatile research group focusing on ice sheets, sea level, and climate. The group is world-leading in modelling of the ice sheet surface including firn, and maintains a dedicated network of automatic weather stations. Currently, our research group has 5 staff members, 10 Postdocs and 8 PhD candidates. For this project we encourage and provide financial support for visits to conferences, workshops and summer schools, and we promote national and international exchange visits.

At the Faculty of Science there are 6 departments to make a fundamental connection with: Biology, Chemistry, Information and Computing Sciences, Mathematics, Pharmaceutical Sciences and Physics. Each of these is made up of distinct institutes which work together to focus on answering some of humanity's most pressing problems. More fundamental still are the individual research groups – the building blocks of our ambitious scientific projects.
Utrecht University is a friendly and ambitious university at the heart of an ancient city. We love to welcome new scientists to our city – a thriving cultural hub that is consistently rated as one of the world's happiest cities. We are renowned for our innovative interdisciplinary research and our emphasis on inspirational research and excellent education. We are equally well-known for our familiar atmosphere and the can-do attitude of our people. This fundamental connection attracts Researchers, Professors and PhD candidates from all over the globe, making both the university and the Faculty of Science a vibrant international and wonderfully diverse community.
Aanvullende informatie
If you have any questions, please contact Bert Wouters (Assistant Professor), via B.Wouters@uu.nl.

Do you have a question about the application procedure? Send an email to science.recruitment@uu.nl.
Solliciteren
Everyone deserves to feel at home at our university. We welcome employees with a wide variety of backgrounds and perspectives. If you have the expertise and the experience to excel in this role, please respond via the "Apply now" button, enclosing:
your letter of motivation;
your curriculum vitae;
the names, telephone numbers, and email addresses of at least two references;
the abstract of your MSc thesis.
If this specific opportunity isn't for you, but you know someone who may be interested, please forward the link to them.

Due to the current situation regarding the Corona virus (COVID-19) the process of selection and interviews is subject to change. Initial interviews will most likely be conducted online.




....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces