Skip to main content

PhD position on remote sensing of ice shelf thinning Utrecht University




PhD position on remote sensing of ice shelf thinning Utrecht University


Functie
Antarctic mass loss is the largest source of uncertainty in current sea level rise projections. Ice shelf instability plays a key role in this uncertainty as ice shelves are the floating gatekeepers that surround 75% of Antarctica's coastline and that buttress the contribution of grounded ice to sea level rise. Although basal melting is known to be one of the key processes for ice shelf instability, the quantitative understanding of this process and how much, how fast it weakens ice shelves is limited as it is determined by fine scale processes. Until recently, these were difficult to observe, but the recent availability of high-resolution satellite measurements now offers the opportunity to quantify the role of channelized melting on ice shelf instability across Antarctica.

In this project, you will combine various remote sensing data sets, such as altimetry measurements (CryoSat-2, Sentinel-3 and ICESat-2) and stereoscopic digital elevation models (e.g.  Reference Elevation Model of Antarctica) to obtain time series of ice shelf thinning at high temporal and spatial resolution. These estimates will be combined with output from a regional climate model to account for changes in snowpack thickness, to isolate basal melt features, melt channel geometry and growth, grounding line migration and frontal iceberg. Furthermore, land-ice elevation changes will also be produced near the grounding zone to monitor the dynamic response of the ice sheet to changes in the ice shelf thickness.

During your project, you will work in close collaboration with remote sensing experts at Delft University of Technology. Your results will be used to validate and calibrate models of basal melt and ice sheet dynamics developed by your colleagues at the Netherlands Royal Meteorological Institute (KNMI) and Université Libre de Bruxelles.

This position is part of the HiRISE project, a collaboration between Researchers at Utrecht University, Delft University of Technology, the Netherlands Royal Meteorological Institute (KNMI), Royal Netherlands Institute for Sea Research (NIOZ) and Université Libre de Bruxelles, and funded by the Netherlands Organisation for Scientific Research (NWO). The project combines field measurements, satellite data and climate models to chart the current state of Antarctica's ice shelves with high resolution and accuracy and reduce the uncertainty in projections of sea level rise. The HiRISE team will eventually consist of four PhD candidates, four Postdocs and one Technician. During the project, you will spend part of your time at one of the collaborating institutes and actively exchange your results, ideas and plans during regular meetings with the other team members.

We aim to start the project on December 1, 2020, or earlier.
📷📷📷
Profiel
Our ideal candidate is driven, positive and collaborative and has:
a MSc in Remote Sensing, Geodesy, Aerospace Engineering, Geophysics, Glaciology or a related discipline;
strong programming skills (Fortran, Python or similar);
experience with statistical/mathematical software environments such as R or Matlab;
experience in development of data processing algorithms;
good reporting and presentation skills;
an excellent level of written and spoken English;
the ability to work independently, to critically assess own results and to cooperate within a wider research team.
To excel in this role, you have:
affinity with remote sensing of ice sheet and ice shelf processes, in particular altimetry or DEM differencing;
experience in handling large data sets and parallel computing, high performance computing or cloud computing.
📷📷📷
Aanbod
an inspiring, open minded and open research group;
a job with national and international collaboration;
research on a challenging topic with great societal relevance;
a position for 4 years;
a full-time gross salary starting for PhD students at €2,395 and increasing to €3,061 per month during the appointment (scale P);
benefits including 8% holiday bonus and 8.3% end-of-year bonus;
a pension scheme, partially paid parental leave, and flexible employment conditions based on the Collective Labour Agreement Dutch Universities (cao).
In addition to the employment conditions laid down in the cao for Dutch Universities, Utrecht University has a number of its own arrangements. For example, there are agreements on professional development, leave arrangements and sports. We also give you the opportunity to expand your terms of employment yourself via the Employment Conditions Selection Model. This is how we like to encourage you to continue to grow.

More information about working at the Faculty of Science can be found here.
Over de organisatie
The Institute for Marine and Atmospheric Research Utrecht (IMAU) offers a unique research and teaching environment, in which the fundamentals of the climate system are studied. Research is organized in five themes: Atmospheric Dynamics, Atmospheric Physics and Chemistry, Coastal and Shelf Sea Dynamics, Ice and Climate and Oceans and Climate. In 2017, IMAU research quality and impact were qualified as 'world leading' by an international visitation committee. Currently, IMAU employs 15 faculty members and 10 support staff and around 20 Postdocs and 20 PhD candidates.

The Ice and Climate group at IMAU is an inspiring, high-quality and versatile research group focusing on ice sheets, sea level, and climate. The group is world-leading in modelling of the ice sheet surface including firn, and maintains a dedicated network of automatic weather stations. Currently, our research group has 5 staff members, 10 Postdocs and 8 PhD candidates. For this project we encourage and provide financial support for visits to conferences, workshops and summer schools, and we promote national and international exchange visits.

At the Faculty of Science there are 6 departments to make a fundamental connection with: Biology, Chemistry, Information and Computing Sciences, Mathematics, Pharmaceutical Sciences and Physics. Each of these is made up of distinct institutes which work together to focus on answering some of humanity's most pressing problems. More fundamental still are the individual research groups – the building blocks of our ambitious scientific projects.
Utrecht University is a friendly and ambitious university at the heart of an ancient city. We love to welcome new scientists to our city – a thriving cultural hub that is consistently rated as one of the world's happiest cities. We are renowned for our innovative interdisciplinary research and our emphasis on inspirational research and excellent education. We are equally well-known for our familiar atmosphere and the can-do attitude of our people. This fundamental connection attracts Researchers, Professors and PhD candidates from all over the globe, making both the university and the Faculty of Science a vibrant international and wonderfully diverse community.
Aanvullende informatie
If you have any questions, please contact Bert Wouters (Assistant Professor), via B.Wouters@uu.nl.

Do you have a question about the application procedure? Send an email to science.recruitment@uu.nl.
Solliciteren
Everyone deserves to feel at home at our university. We welcome employees with a wide variety of backgrounds and perspectives. If you have the expertise and the experience to excel in this role, please respond via the "Apply now" button, enclosing:
your letter of motivation;
your curriculum vitae;
the names, telephone numbers, and email addresses of at least two references;
the abstract of your MSc thesis.
If this specific opportunity isn't for you, but you know someone who may be interested, please forward the link to them.

Due to the current situation regarding the Corona virus (COVID-19) the process of selection and interviews is subject to change. Initial interviews will most likely be conducted online.




....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...