Skip to main content

PhD Position in Transformative Technologies and Smart Watersheds Project University of Waterloo



PhD Position in Transformative Technologies and Smart Watersheds Project University of Waterloo

Title of Opportunity: Application of novel airborne Ku and L-band SAR observations for watershed-scale seasonal snow mapping

Start date: 1 September 2020 or negotiable

A fully funded four-year PhD position is available in the 'Transformative Sensor Technologies and Smart Watersheds for Canadian Water Futures' project (TTSW) at the University of Waterloo. The position is part of Global Water Futures: Solutions to Water Threats in an Era of Global Change, a large collaborative initiative involving multiple Canadian universities and partner organizations. TTSW aims to develop, test, and employ advanced terrestrial, sub-orbital, and satellite remote sensing tools targeted to support research regarding the emerging spectrum of water related issues throughout cold regions.

More Information

The CryoSAR airborne radar system is a new and unique CFI-funded synthetic aperture radar (SAR) system specifically designed to make fully polarimetric and InSAR-capable observations of cold season environments at Ku and L-band frequencies. The successful PhD candidate will explore ways that CryoSAR observations of snow can be used to estimate the distributions of snow water equivalent (SWE) at watershed-scales. To achieve this, the candidate will be expected to develop remote sensing modelling approaches that focus on SWE retrievals from SAR backscatter and InSAR observations. The successful candidate will be encouraged to be an active participant in winter field campaigns in prairie and alpine environments to characterize SWE and snowpack microstructure properties. They will also have access to a dedicated high-performance GPU-based processing system capable of conducting end-to-end SAR processing and SWE retrieval modelling.

The successful candidate will work under the supervision of Dr. Richard Kelly, and will collaborate with researchers at partner organizations involved with the CryoSAR project.

Eligibility

Ideally, you will have a strong background in quantitative remote sensing science, preferably with an understanding of Earth system science processes, especially hydrological science. Ideally, you should hold a degree in geographical science, geophysics, Earth science or engineering. The candidate should have strong analytical capabilities with a high degree of comfort across coding environments such as C, Python, R, IDL, Matlab or other programming languages commonly used in remote sensing. Strong communication skills are essential and the candidate should be able to work both independently and within a group setting both in field environments and in the lab.

Full funding is available for four years, pending satisfactory progress through the PhD program.

Application Instructions

Interested applicants should submit a cover letter stating their motivation and experience. In addition, a curriculum vitae, unofficial transcripts, and contact information for three references should be included in a single .pdf file and sent to Dr. Richard Kelly (rejkelly@uwaterloo.ca) with [PhD-TTSW-RichardKelly-2020] in the subject line.

We thank all applicants for their interest. However, only selected candidates will be contacted.



....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
http://geogisgeo.blogspot.com
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Earthquake. Terminology and Concept

Earthquake It is a transient violent movement of the Earth's surface that follows a release of energy in the Earth's crust. 2. Magnitude It is a measure of the amount of energy released during an earthquake and expressed by Richter scale. Effect of earthquake according to Richter scale . Richter Magnitude Earthquake effects Less than 3.5 Generally not felt, but recorded. 3.5-5.4 Often felt, but rarely causes damage. Under 6.0 At most, slight damage to well-designed buildings. Can cause major damage to poorly constructed buildings over small regions. 6.1-6.9 Can be destructive in areas up to about 100 across where people live. 7.0-7.9 Major earthquake. Can cause serious damage over larger areas. 8 or greater Great Earthquake. Can cause serious damage in areas several hundred across. 3. Intensity Intensity is a qualitative measure of the actual shaking at a location during an Earthquake, and is assigned in Roman Capital Numerical. It refers to the effects of earthqu