Skip to main content

PhD position PhD in seasonal prediction of harmful algaeblooms Nansen Environmental and Remote Sensing Center

PhD position PhD in seasonal prediction of harmful algaeblooms Nansen Environmental and Remote Sensing Center




The Nansen Center is an independent non-profit research foundation located in Bergen, Norway. We conduct multidisciplinary research with a focus on the marine environment, cryosphere and atmosphere, where scientific activities are closely integrated with innovation and service development. The Arctic is one of our main areas of attention.
NERSC takes an active part in training and capacity building for students and young scientists, as well as dissemination to stakeholders in public and private sector and society in general.
The Nansen Center is an international workplace with some 70 employees from 24 nations.
The Doctoral fellowship position
The Nansen Center has a vacancy for a Doctoral fellowship (PhD candidate) in the field of climate prediction. The position is an institute-defined PhD topic, which is fully funded by the Research Council of Norway for a three-year period. The candidate will be employed at NERSC and formally complete the doctoral degree at the University of Bergen.
NERSC introduced the Ensemble Kalman Filter (EnKF) data assimilation method in the 1990s and has maintained its further theoretical development and application, including combination of data assimilation with machine learning. The center develop and maintain two state-of-the-art prediction systems: The Earth System seasonal-to-decadal predictions with the Norwegian Climate Prediction Model (NorCPM) and the real-time ocean and sea ice forecasting system for high latitudes within the European Copernicus Marine Environmental Monitoring Services.
The candidate will focus on research for the identification of harmful environmental conditions related to ocean fisheries and aquaculture. The candidate will analyse in-situ, satellite observations and model simulations and explore the use of machine learning techniques to predict the risks of occurrence of harmful algae bloom in Norway at sub-seasonal to seasonal time scales. The prediction scheme will be fed by existing dynamical climate predictions (e.g NorCPM, C3S) and real-time ocean colour satellite data.
The candidate will be supervised by Dr. François Counillon who has expertise on data assimilation and climate prediction and Dr. Julien Brajard who has expertise on machine learning and remote sensing.
Qualifications
For ranking of qualified candidates, the following criteria will be evaluated:
A master´s degree or equivalent (eligible for registration as a PhD candidate at University of Bergen) in applied mathematics, Earth system science, physics, engineering, or computer science is required
Experience with machine learning and/or data assimilation is a strong asset
Knowledge in oceanography, biogeochemistry or climate dynamics would be beneficial
Good skills in programming and data analysis software is expected
Good written and oral communication skills in English
Personal Qualities
We are seeking a highly motivated candidate with excellent problem resolving skills and who will actively participate in and cooperate with our scientists. The candidate will gain experience from a research institute as well as the formal university education.
We offer
Interesting and challenging tasks
Supervision by acknowledged professionals within data assimilation, machine learning, remote sensing and data analysis
Work in a research-intensive, international, informal, and social academic work environment
Salary and social benefits according to national regulations for doctoral fellowships
Access to supercomputing facilities
Information
For further information about the position, please contact
Dr. François Counillon for scientific questions: e-mail: Francois.counillon@nersc.no, tlf: 99351953
Head of Administration Christine Sivertsen for administrative issues: e-mail: Christine.sivertsen@nersc.no, tlf: 90788115.
Submission deadline: August 1st, 2020
Areas of Research
Atmospheric Physics & Meteorology
Fisheries & Aquaculture
Marine Biology



....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...