Skip to main content

PhD position PhD in seasonal prediction of harmful algaeblooms Nansen Environmental and Remote Sensing Center

PhD position PhD in seasonal prediction of harmful algaeblooms Nansen Environmental and Remote Sensing Center




The Nansen Center is an independent non-profit research foundation located in Bergen, Norway. We conduct multidisciplinary research with a focus on the marine environment, cryosphere and atmosphere, where scientific activities are closely integrated with innovation and service development. The Arctic is one of our main areas of attention.
NERSC takes an active part in training and capacity building for students and young scientists, as well as dissemination to stakeholders in public and private sector and society in general.
The Nansen Center is an international workplace with some 70 employees from 24 nations.
The Doctoral fellowship position
The Nansen Center has a vacancy for a Doctoral fellowship (PhD candidate) in the field of climate prediction. The position is an institute-defined PhD topic, which is fully funded by the Research Council of Norway for a three-year period. The candidate will be employed at NERSC and formally complete the doctoral degree at the University of Bergen.
NERSC introduced the Ensemble Kalman Filter (EnKF) data assimilation method in the 1990s and has maintained its further theoretical development and application, including combination of data assimilation with machine learning. The center develop and maintain two state-of-the-art prediction systems: The Earth System seasonal-to-decadal predictions with the Norwegian Climate Prediction Model (NorCPM) and the real-time ocean and sea ice forecasting system for high latitudes within the European Copernicus Marine Environmental Monitoring Services.
The candidate will focus on research for the identification of harmful environmental conditions related to ocean fisheries and aquaculture. The candidate will analyse in-situ, satellite observations and model simulations and explore the use of machine learning techniques to predict the risks of occurrence of harmful algae bloom in Norway at sub-seasonal to seasonal time scales. The prediction scheme will be fed by existing dynamical climate predictions (e.g NorCPM, C3S) and real-time ocean colour satellite data.
The candidate will be supervised by Dr. François Counillon who has expertise on data assimilation and climate prediction and Dr. Julien Brajard who has expertise on machine learning and remote sensing.
Qualifications
For ranking of qualified candidates, the following criteria will be evaluated:
A master´s degree or equivalent (eligible for registration as a PhD candidate at University of Bergen) in applied mathematics, Earth system science, physics, engineering, or computer science is required
Experience with machine learning and/or data assimilation is a strong asset
Knowledge in oceanography, biogeochemistry or climate dynamics would be beneficial
Good skills in programming and data analysis software is expected
Good written and oral communication skills in English
Personal Qualities
We are seeking a highly motivated candidate with excellent problem resolving skills and who will actively participate in and cooperate with our scientists. The candidate will gain experience from a research institute as well as the formal university education.
We offer
Interesting and challenging tasks
Supervision by acknowledged professionals within data assimilation, machine learning, remote sensing and data analysis
Work in a research-intensive, international, informal, and social academic work environment
Salary and social benefits according to national regulations for doctoral fellowships
Access to supercomputing facilities
Information
For further information about the position, please contact
Dr. François Counillon for scientific questions: e-mail: Francois.counillon@nersc.no, tlf: 99351953
Head of Administration Christine Sivertsen for administrative issues: e-mail: Christine.sivertsen@nersc.no, tlf: 90788115.
Submission deadline: August 1st, 2020
Areas of Research
Atmospheric Physics & Meteorology
Fisheries & Aquaculture
Marine Biology



....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...