Skip to main content

PhD position PhD in seasonal prediction of harmful algaeblooms Nansen Environmental and Remote Sensing Center

PhD position PhD in seasonal prediction of harmful algaeblooms Nansen Environmental and Remote Sensing Center




The Nansen Center is an independent non-profit research foundation located in Bergen, Norway. We conduct multidisciplinary research with a focus on the marine environment, cryosphere and atmosphere, where scientific activities are closely integrated with innovation and service development. The Arctic is one of our main areas of attention.
NERSC takes an active part in training and capacity building for students and young scientists, as well as dissemination to stakeholders in public and private sector and society in general.
The Nansen Center is an international workplace with some 70 employees from 24 nations.
The Doctoral fellowship position
The Nansen Center has a vacancy for a Doctoral fellowship (PhD candidate) in the field of climate prediction. The position is an institute-defined PhD topic, which is fully funded by the Research Council of Norway for a three-year period. The candidate will be employed at NERSC and formally complete the doctoral degree at the University of Bergen.
NERSC introduced the Ensemble Kalman Filter (EnKF) data assimilation method in the 1990s and has maintained its further theoretical development and application, including combination of data assimilation with machine learning. The center develop and maintain two state-of-the-art prediction systems: The Earth System seasonal-to-decadal predictions with the Norwegian Climate Prediction Model (NorCPM) and the real-time ocean and sea ice forecasting system for high latitudes within the European Copernicus Marine Environmental Monitoring Services.
The candidate will focus on research for the identification of harmful environmental conditions related to ocean fisheries and aquaculture. The candidate will analyse in-situ, satellite observations and model simulations and explore the use of machine learning techniques to predict the risks of occurrence of harmful algae bloom in Norway at sub-seasonal to seasonal time scales. The prediction scheme will be fed by existing dynamical climate predictions (e.g NorCPM, C3S) and real-time ocean colour satellite data.
The candidate will be supervised by Dr. François Counillon who has expertise on data assimilation and climate prediction and Dr. Julien Brajard who has expertise on machine learning and remote sensing.
Qualifications
For ranking of qualified candidates, the following criteria will be evaluated:
A master´s degree or equivalent (eligible for registration as a PhD candidate at University of Bergen) in applied mathematics, Earth system science, physics, engineering, or computer science is required
Experience with machine learning and/or data assimilation is a strong asset
Knowledge in oceanography, biogeochemistry or climate dynamics would be beneficial
Good skills in programming and data analysis software is expected
Good written and oral communication skills in English
Personal Qualities
We are seeking a highly motivated candidate with excellent problem resolving skills and who will actively participate in and cooperate with our scientists. The candidate will gain experience from a research institute as well as the formal university education.
We offer
Interesting and challenging tasks
Supervision by acknowledged professionals within data assimilation, machine learning, remote sensing and data analysis
Work in a research-intensive, international, informal, and social academic work environment
Salary and social benefits according to national regulations for doctoral fellowships
Access to supercomputing facilities
Information
For further information about the position, please contact
Dr. François Counillon for scientific questions: e-mail: Francois.counillon@nersc.no, tlf: 99351953
Head of Administration Christine Sivertsen for administrative issues: e-mail: Christine.sivertsen@nersc.no, tlf: 90788115.
Submission deadline: August 1st, 2020
Areas of Research
Atmospheric Physics & Meteorology
Fisheries & Aquaculture
Marine Biology



....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud