Skip to main content

PhD position PhD in seasonal prediction of harmful algaeblooms Nansen Environmental and Remote Sensing Center

PhD position PhD in seasonal prediction of harmful algaeblooms Nansen Environmental and Remote Sensing Center




The Nansen Center is an independent non-profit research foundation located in Bergen, Norway. We conduct multidisciplinary research with a focus on the marine environment, cryosphere and atmosphere, where scientific activities are closely integrated with innovation and service development. The Arctic is one of our main areas of attention.
NERSC takes an active part in training and capacity building for students and young scientists, as well as dissemination to stakeholders in public and private sector and society in general.
The Nansen Center is an international workplace with some 70 employees from 24 nations.
The Doctoral fellowship position
The Nansen Center has a vacancy for a Doctoral fellowship (PhD candidate) in the field of climate prediction. The position is an institute-defined PhD topic, which is fully funded by the Research Council of Norway for a three-year period. The candidate will be employed at NERSC and formally complete the doctoral degree at the University of Bergen.
NERSC introduced the Ensemble Kalman Filter (EnKF) data assimilation method in the 1990s and has maintained its further theoretical development and application, including combination of data assimilation with machine learning. The center develop and maintain two state-of-the-art prediction systems: The Earth System seasonal-to-decadal predictions with the Norwegian Climate Prediction Model (NorCPM) and the real-time ocean and sea ice forecasting system for high latitudes within the European Copernicus Marine Environmental Monitoring Services.
‍
The candidate will focus on research for the identification of harmful environmental conditions related to ocean fisheries and aquaculture. The candidate will analyse in-situ, satellite observations and model simulations and explore the use of machine learning techniques to predict the risks of occurrence of harmful algae bloom in Norway at sub-seasonal to seasonal time scales. The prediction scheme will be fed by existing dynamical climate predictions (e.g NorCPM, C3S) and real-time ocean colour satellite data.
‍
The candidate will be supervised by Dr. François Counillon who has expertise on data assimilation and climate prediction and Dr. Julien Brajard who has expertise on machine learning and remote sensing.
Qualifications
For ranking of qualified candidates, the following criteria will be evaluated:
A masterΒ΄s degree or equivalent (eligible for registration as a PhD candidate at University of Bergen) in applied mathematics, Earth system science, physics, engineering, or computer science is required
Experience with machine learning and/or data assimilation is a strong asset
Knowledge in oceanography, biogeochemistry or climate dynamics would be beneficial
Good skills in programming and data analysis software is expected
Good written and oral communication skills in English
Personal Qualities
We are seeking a highly motivated candidate with excellent problem resolving skills and who will actively participate in and cooperate with our scientists. The candidate will gain experience from a research institute as well as the formal university education.
We offer
Interesting and challenging tasks
Supervision by acknowledged professionals within data assimilation, machine learning, remote sensing and data analysis
Work in a research-intensive, international, informal, and social academic work environment
Salary and social benefits according to national regulations for doctoral fellowships
Access to supercomputing facilities
Information
For further information about the position, please contact
Dr. François Counillon for scientific questions: e-mail: Francois.counillon@nersc.no, tlf: 99351953
Head of Administration Christine Sivertsen for administrative issues: e-mail: Christine.sivertsen@nersc.no, tlf: 90788115.
‍
Submission deadline: August 1st, 2020
‍
Areas of Research
Atmospheric Physics & Meteorology
Fisheries & Aquaculture
Marine Biology



....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...